МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УДМУРТСКОЙ РЕСПУБЛИКИ

Автономное профессиональное образовательное учреждение Удмуртской Республики
«Техникум радиоэлектроники и информационных технологий
имени А.В. Воскресенского

Практические работы
по дисциплине ОПД.02 «Основы электротехники»
Профессия 11.01.01 Монтажник радиоэлектронной аппаратуры и приборов

Разработал Т.Н. Корнева преподаватель:

Ижевск, 2022

«Расчет параметров батареи конденсаторов»

Цель работы: Научиться производить расчет параметров батареи конденсаторов

Задание:

Вычертить схему (см. рисунок) с учетом данных для своего варианта (см. таблицу). Определить эквивалентные емкость C, заряд Q батареи конденсаторов и энергию W, накопленную батареей конденсаторов.

Вычислить напряжение и заряд на каждом конденсаторе.

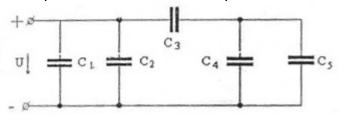


Рисунок 1 – Схема батареи конденсаторов

Таблица 1 – Данные к схеме по вариантам

1 40317140	, , , , , ,		AOMO 110	Baphan		
DODINGUE	U,	C ₁ ,	C ₂ ,	C ₃ ,	C ₄ ,	C ₅ ,
вариант	В	мкФ	мкФ	мкФ	мкФ	мкФ
1	150	10	20	30	60	-
2	60	20	-	90	15	30
3	150	15	15	30	20	40
4	60	-	20	90	40	5
5	150	20	10	30	-	60
6	60	10	10	90	45	-
7	150	30	-	30	10	50
8	60	-	20	90	25	20
9	150	-	30	30	30	30
10	60	15	5	90	-	45

Методические указания: Эквивалентную емкость, заряд и энергию рассчитать методом последовательных преобразований в соответствии с таблицей

Таблица 2 – Особенности соединения конденсаторов

Вид соединения	последовательное	параллельное
Схема соединения	C1 C2	C1
Эквивалентна я емкость	$C_{_{9KB}} = \frac{C_1 * C_2}{C_1 + C_2}$	$C_{_{\mathfrak{I}KB}}=C_{1}+C_{2}$
Напряжение	$U_{ m o 6 m} = U_1 + U_2$ $U_1 = rac{Q_1}{C_1}; \ U_2 = rac{Q_2}{C_2}$	$U_{ m o 6 m} = U_1 = U_2$ $U_1 = rac{Q_1}{C_1}; \ U_2 = rac{Q_2}{C_2}$
Заряд	$Q_{\scriptscriptstyle ЭKB} = Q_1 = Q_2 = C_{\scriptscriptstyle ЭKB} * U_{общ}$	$Q_{\scriptscriptstyle ЭKB} = Q_1 + Q_2 = C_{\scriptscriptstyle ЭKB} * U_{общ}$

Энергия	$W_{\scriptscriptstyle{9KB}} = rac{C_{\scriptscriptstyle{9KB}} * U_{\scriptscriptstyle{00011\!\!1}}^2}{2}$
---------	---

Тема: Расчет сопротивления проводников и выбор сечений проводов.

Цель работы: Научиться производить расчет сопротивления проводника по его параметрам; производить выбор сечений проводов по току.

Задание 1.

- 1. Проведите анализ формулы для расчета сопротивления из лекций
- 2. Выполните расчет параметра по формуле сопротивления в соответствии варианту (таблица 1). Номер варианта соответствует последней цифре номера в списке группы по журналу. Удельное сопротивление определить по таблице 2

Таблица 1 – Задания по вариантам

Вари	Данные для расчета
ант	
1.	Определите сопротивление алюминиевого провода, длина которого 1800 м и пло-
	щадь поперечного сечения 10 мм^2 .
2.	Площадь сечения медной проволоки равна 2мм ² , а длина 55м. Определить ее сопротивление.
3.	Никелиновая проволока имеет сопротивление 200 Ом и длину 100 м. Определить площадь поперечного сечения.
4.	Сколько метров медного провода сечением 2 мм ² необходимо, чтобы сопротивление было равно 1 Ом?
5.	Электрическая плитка имеет нагревательный элемент, изготовленный из константановой проволоки длиной 0,5м и сечением 0,2мм ² . Каково сопротивление спирали?
6.	Нужно изготовить реостат с сопротивлением 50 Ом. Имеется манганиновая проволока сечением 0,2 мм ² . Сколько метров проволоки потребуется?
7.	Каково сопротивление алюминиевого провода сечением 2,5мм ² и длиной 300м?
8.	Сопротивление нагревательной спирали 24Ом. Какой длины должен быть провод из нихрома, если сечение его 0,3мм ² ?
9.	Провод сечением 4мм ² и длиной 200м имеет сопротивление 6,5 Ом. Определить материал провода.
10.	Нужно изготовить реостат с сопротивлением 20 Ом из манганинового провода. Определить сечение провода, если его длина 5м.

Таблица 2 – Удельное сопротивление материалов

Вещество	ρ, (Om X X mm²)/m	Вещество	ρ, (Ом X Х мм²)/м
Алюминий	0,055 0,10 0,017 0,1 0,96	Сталь	0,06 0,5 0,4 0,45 1,1

Задание 2

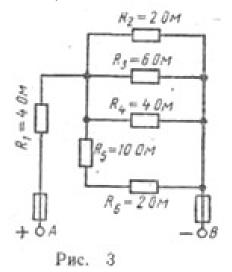
1. Определить сечение провода по таблицам, исходя из данных варианта, приведенных в таблице3. Выбор сечения провода провести после расчета силы тока в проводнике согласно таблиц 4 (для переменного тока) и таблицы 5(для постоянного тока).

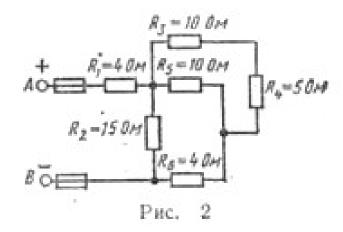
Таблица 3 Данные расчетов по вариантам

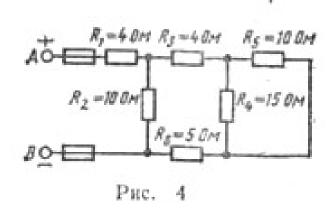
№ варианта	Род тока	Напряжение, В	Материал про-	Мощность при-
			вода	емников, кВт
1	постоянный	12	медь	0,20
2	переменный	220	медь	1,2
3	переменный	220	алюминий	2,2
4	переменный	380	медь	2,3
5	переменный	380	алюминий	3,8
6	постоянный	12	медь	0,30
7	переменный	220	медь	2,9
8	переменный	220	алюминий	3,5
9	переменный	380	медь	4,9
10	переменный	380	алюминий	6,0
11	постоянный	12	медь	0,52
12	переменный	220	медь	4,4
13	переменный	220	алюминий	5,5
14	переменный	380	медь	7,6
15	переменный	380	алюминий	9,5
16	постоянный	12	медь	0,70
17	переменный	220	медь	7,0
18	переменный	220	алюминий	8,8
19	переменный	380	медь	12,2
20	переменный	380	алюминий	15,2
21	постоянный	12	медь	0,92
22	переменный	220	медь	11,0
23	переменный	220	алюминий	13,9
24	переменный	380	медь	19,0
25	переменный	380	алюминий	23,9
26	постоянный	12	медь	1,24
27	переменный	220	медь	17,6
28	переменный	220	алюминий	1,2
29	переменный	380	медь	30,4
30	переменный	380	алюминий	7,6

Таблица 4 - Сечение провода для передачи переменного тока в сетях 220/380 Вольт

	6	10	13	16	20	25	32	40	50	63	80
1											
220 B	1,2	2,2	2,9	3,5	4,4	5,5	7,0	8,8	11,0	13,9	17,6
380 B	2,3	3,8	4,9	6,0	7,6	9,5	12,2	15,2	19,0	23,9	30,4
Cu	0,5	0,5	0,75	1,0	1,5	2,0	4,0	4,0	6,0	10,0	10,0
Al	2,5	2,5	2,5	2,5	2.5	4,0	4.0	6,0	10,0	16,0	25,0
	Cu	220 B 1,2 380 B 2,3 Cu 0,5	220 B 1,2 2,2 380 B 2,3 3,8 Cu 0,5 0,5	220 B 1,2 2,2 2,9 380 B 2,3 3,8 4,9 Cu 0,5 0,5 0,75	220 B 1,2 2,2 2,9 3,5 380 B 2,3 3,8 4,9 6,0 Cu 0,5 0,5 0,75 1,0	220 B 1,2 2,2 2,9 3,5 4,4 380 B 2,3 3,8 4,9 6,0 7,6 Cu 0,5 0,5 0,75 1,0 1,5	220 B 1,2 2,2 2,9 3,5 4,4 5,5 380 B 2,3 3,8 4,9 6,0 7,6 9,5 Cu 0,5 0,5 0,75 1,0 1,5 2,0	220 B 1,2 2,2 2,9 3,5 4,4 5,5 7,0 380 B 2,3 3,8 4,9 6,0 7,6 9,5 12,2 Cu 0,5 0,5 0,75 1,0 1,5 2,0 4,0	220 B 1,2 2,2 2,9 3,5 4,4 5,5 7,0 8,8 380 B 2,3 3,8 4,9 6,0 7,6 9,5 12,2 15,2 Cu 0,5 0,5 0,75 1,0 1,5 2,0 4,0 4,0	220 B 1,2 2,2 2,9 3,5 4,4 5,5 7,0 8,8 11,0 380 B 2,3 3,8 4,9 6,0 7,6 9,5 12,2 15,2 19,0 Cu 0,5 0,5 0,75 1,0 1,5 2,0 4,0 4,0 6,0	220 B 1,2 2,2 2,9 3,5 4,4 5,5 7,0 8,8 11,0 13,9 380 B 2,3 3,8 4,9 6,0 7,6 9,5 12,2 15,2 19,0 23,9 Cu 0,5 0,5 0,75 1,0 1,5 2,0 4,0 4,0 6,0 10,0


Таблица 5 – Сечение провода для передачи постоянного тока при напряжении 12 Вольт


Ток, А	16,5	21,5	25,0	32,0	43,5	58,5	77,0	103,0	142,5
Мощность,	0,20	0,26	0,30	0,38	0,52	0,70	0,92	1,24	1,71
кВт									
Сечение,	0,5	0,75	1,0	1,5	2,5	4,0	6,0	10,0	16,0
мм2									


ПРАКТИЧЕСКАЯ РАБОТА №3 Тема: Расчет простых цепей

Задача 1. Цепь постоянного тока содержит несколько резисторов, соединенных смешанно. Схема цепи с указанием сопротивлений резисторов приведена на соответствующем рисунке. Номер рисунка, заданные значения одного из напряжений или токов приведены в табл. 1. Определить токи и падение напряжения на каждом участке цепи, составить баланс мощностей.

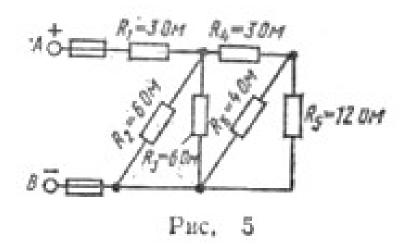
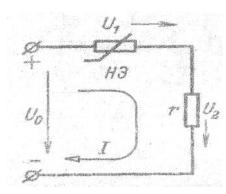


Таблица 1

Таблиі	ıa 1	
Номер	Номер	Задаваемая
варианта	рисунка	величина
01	1	$U_{AB} = 100 B$
02	1	$I_1 = 20 A$
03	1	$U_2 = 30 B$
04	1	$I_5 = 10 \text{ A}$
05	1	$U_1 = 20 B$
06	2	$U_{AB} = 50 B$
07	2	$I_2 = 2 A$
08	2	$I_1 = 5 A$
09	2	$U_5 = 18 B$
10	2	$U_4 = 10 B$
11	3	$U_{AB} = 120 \text{ B}$
12	3	$U_3 = 24 \text{ B}$
13	3	$I_6 = 4 A$
14	3	$I_1 = 24 A$
15	3	$I_4 = 3 A$
16	4	$I_2 = 15 \text{ A}$
17	4	$U_2 = 120 B$
18	4	$U_{AB} = 250 \text{ B}$
19	4	$I_6 = 8 A$
20	4	$I_3 = 2,4 A$
21	5	$U_4 = 12 B$
22	5	$I_3 = 6 A$
23	5	$U_{AB} = 60 B$
24	5	$I_1 = 24 A$
25	5	$I_2 = 4 A$
26	1	$I_3 = 1 A$

ПРАКТИЧЕСКАЯ РАБОТА №4 «Расчет электрических цепей с применением законов Ома и Кирхгофа»

Задание: Для схемы согласно варианта рассчитать токи в ветвях с применением законов Кирхгофа. Составить баланс мощностей и для любого замкнутого контура построить потенциальную диаграмму.


$N_{\underline{o}}$	avawa	пано
варианта	схема	дано

1; 14	$\begin{bmatrix} a \\ R_1 \\ d \end{bmatrix}$ $\begin{bmatrix} B_2 \\ E_2 \\ \end{bmatrix}$ $\begin{bmatrix} C \\ R_3 \\ E_3 \\ \end{bmatrix}$	$E_2 = 2 B,$ $E_3 = 6 B;$ $R_1 = 2 OM,$ $R_2 = 7 OM,$ $R_3 = 4 OM.$
2; 15	R_1 E_1 E_1 E_3 E_4 E_3	$E_1 = 24 \text{ B}, E_3 = 6 \text{ B}; R_1 = 12 \text{ Om}, R_2 = 4 \text{ Om}, R_3 = 1 \text{ Om}$
3; 16	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ E_2 \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ k \end{bmatrix}$	$E_1 = 60 \text{ B}, E_2 = 65 \text{ B}; $ $R_1 = 5 \text{ Om}, R_2 = 5 \text{ Om}, $ $R_3 = 10 \text{ Om}.$
4; 17	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \\ \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ f \\ \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ \end{bmatrix}$	$E_1 = 29 \text{ B}, E_3 = 3 \text{ B}; $ $R_1 = 3 \text{ Om}, R_2 = 4 \text{ Om}, $ $R_3 = 1 \text{ Om}.$
5; 18	$\begin{bmatrix} \mathbf{a} & & \mathbf{b} & & \mathbf{c} \\ \mathbf{R}_1 & & \mathbf{R}_2 & & \mathbf{c} \\ \mathbf{d} & & \mathbf{e} & \mathbf{E}_2 & & \mathbf{f} \\ \mathbf{E}_2 & & \mathbf{f} & \mathbf{E}_3 \\ \mathbf{g} & & \mathbf{h} & & \mathbf{k} \end{bmatrix}$	$E_2 = 2 B,$ $E_3 = 35 B;$ $R_1 = 1 OM,$ $R_2 = 3 OM,$ $R_3 = 5 OM.$
6; 19	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \\ \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ f \\ k \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ k \end{bmatrix}$	$E_1 = 11 \text{ B}, \qquad E_2 = 10 \text{ B};$ $R_1 = 6 \text{ Om}, \qquad R_2 = 3 \text{ Om},$ $R_3 = 1 \text{ Om}.$
7; 20	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ f \\ E_3 \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ E_3 \end{bmatrix}$	$E_1 = 19 \text{ B}, E_3 = 32 \text{ B}; $ $R_1 = 4 \text{ OM}, R_2 = 9 \text{ OM}, $ $R_3 = 1 \text{ OM}.$

8; 21	R_1 E_2 E_1 E_2 E_3	$E_1 = 24 \text{ B},$ $E_2 = 28 \text{ B};$ $R_1 = 8 \text{ Om},$ $R_2 = 4 \text{ Om},$ $R_3 = 2 \text{ Om}$
9; 22	R_1 R_2 E_2 E_3 E_3	$E_2 = 12 \text{ B},$ $E_3 = 26 \text{ B};$ $R_1 = 6 \text{ Om},$ $R_2 = 4 \text{ Om},$ $R_3 = 2 \text{ Om}.$
10; 23	R_1 E_1 E_2 E_1 E_2 E_3	$E_1 = 50 \text{ B}, E_2 = 69 \text{ B}; $ $R_1 = 2 \text{ Om}, R_2 = 7 \text{ Om}, $ $R_3 = 12 \text{ Om}.$
11; 24	$\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{c} \\ \mathbf{R}_1 & \mathbf{c} & \mathbf{R}_3 \\ \mathbf{d} & \mathbf{E}_1 & \mathbf{e} & \mathbf{f} \\ \mathbf{E}_3 & \mathbf{k} \end{bmatrix}$	$E_1 = 14 \text{ B}, E_3 = 24 \text{ B}; $ $R_1 = 1 \text{ OM}, R_2 = 2 \text{ OM}, $ $R_3 = 3 \text{ OM}.$
12; 25	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ E_2 \\ k \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ k \end{bmatrix}$	$E_1 = 12 \text{ B}, \qquad E_2 = 6 \text{ B};$ $R_1 = 4 \text{ OM}, \qquad R_2 = 2 \text{ OM},$ $R_3 = 3 \text{ OM}.$
13; 26	$\begin{bmatrix} a \\ R_1 \\ d \\ \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ E_3 \\ k \end{bmatrix}$	$E_1 = 11 \text{ B}, \qquad E_3 = 2 \text{ B};$ $R_1 = 2 \text{ Om}, \qquad R_2 = 5 \text{ Om},$ $R_3 = 1 \text{ Om}.$

«Графический расчет нелинейной цепи»

Задача 1. Определить ток и напряжение на участках цепи, состоящей из резистора с

сопротивлением r и нелинейного элемента при напряжении цепи $0,6U_0$. Нелинейный элемент имеет вольт-амперную характеристику, уравнение которой $I=0,04\cdot U_0^{\ 2}$

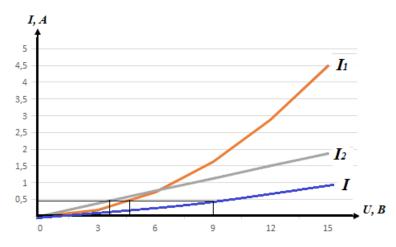
Определить статическое и динамическое сопротивление в точке 0,6 U

№ варианта	г, Ом	U ₀ цепи, В
1;6	17	10
2; 7	13	15
3; 8	12	15
4; 9	10	12
5;10	5	20

Последовательность решения:

1) построить ВАХ линейного элемента по уравнению

$$I_2 = \frac{U_0}{r}$$


Это прямая, которая строится по двум точкам (0;0) $(U_0;I_2)$;

2) в этом же диапазоне тока строим BAX нелинейного элемента. Задать несколько (3-4) значений I в пределах от 0 до заданного значения I_{lmax} . Рассчитать значение U по

формуле
$$U = \sqrt{\frac{I_1}{0.04}}$$
. Полученные значения занести в таблицу;

U, B			
I ₁ , A			

3) строим на одной координатной плоскости два графика I_1 =f(U) и I_2 =f(U). Строим сумму графиков I. Для значения U = 0,6 U_0 , определяем значение тока в цепи I и падение напряжения на каждом элементе U_1 U_2 .

ПРАКТИЧЕСКАЯ РАБОТА 6 Расчет характеристик магнитного поля

```
Варианты 6-10 Задача 2, 6
Варианты 11-15 Задача 3, 6
Варианты 16-20 Задача 4, 6
Варианты 21-25 Задача 5, 6
```

- 1. Вычислите индукцию магнитного поля, обеспечивающую в контуре с числом витков w=100 и активной длиной проводника l=60 мм ЭДС, равную 4,8 В. Контур движется с линейной скоростью $v=1\ 000$ мм/с. По правилу какой руки определяется направление ЭДС?
- 2. Вычислите индукцию магнитного поля, действующего на проводник длиной l=60 см, по которому течет ток I=15 A, если электромагнитная сила F=6,3 H. По правилу какой руки определяется направление электромагнитной силы ?
- 3. На проводник длиной I = 10 см с током I = 2 А действует магнитное поле с индукцией B = 1,3 Тл (рис. 4.4, а). Определите значение и направление силы, действующей на проводник.
- 4. Проводник длиной l=10 см перемещается в магнитном поле с индукцией B=1,3 Тл (рис. 4.4, б). Скорость перемещения проводника v=1 00 см/с. Определите значение и направление ЭДС в проводнике.

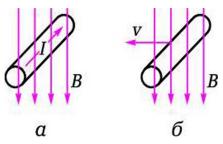


Рис. 4.4. Проводник с током в магнитном поле: а — к задаче 3; б — к задаче 4

- 5. Чему равна индуктивность катушки L, если при скорости изменения тока $\Delta I/\Delta t = 2$ A/c в ней индуцируется ЭДС самоиндукции E =3B?
- 6. Покажите прямыми линиями на рисунке соответствие между параметром магнитного поля, его буквенным обозначением и единицей измерения.

Наименов	ание
Индукц	ия
Напряженность ма	глоп отонтинт
Намагничивак	ощая сила
Магнитный	поток
Магнитная по	стоянная

Об	эинэгынс
	Φ
	Iw
	В
	μ_0
	Н
	11

Единица измерения
А/м
Тл
Гн/м
A
Вб

Расчет цепи переменного тока с последовательным соединением элементов.

Задание Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), включенные последовательно. Схема цепи приведена на соответствующем рисунке. Номер рисунка и значения сопротивлений всех элементов, а также один дополнительный параметр заданы в табл. 1.

Начертить схему цепи и определить следующие величины, относящиеся к данной цепи, если они не заданы в табл. 4: 1) полное сопротивление Z; 2) напряжение U, приложенное к цепи; 3) ток I; 4) угол сдвига фаз φ (по величине и знаку); 5) активную P, реактивную Q и полную S мощности цепи. Начертить в масштабе векторную диаграмму цепи и пояснить ее построение. C помощью логических рассуждений пояснить характер изменения (увеличится, уменьшится, останется без изменения) тока, активной, реактивной мощности в цепи при увеличении частоты тока в два раза, Напряжение, приложенное к цепи, считать неизменным.

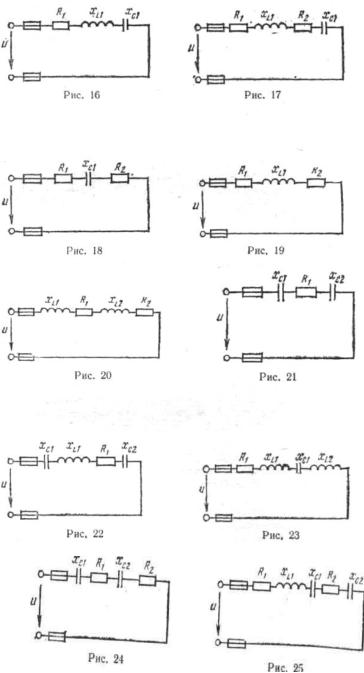
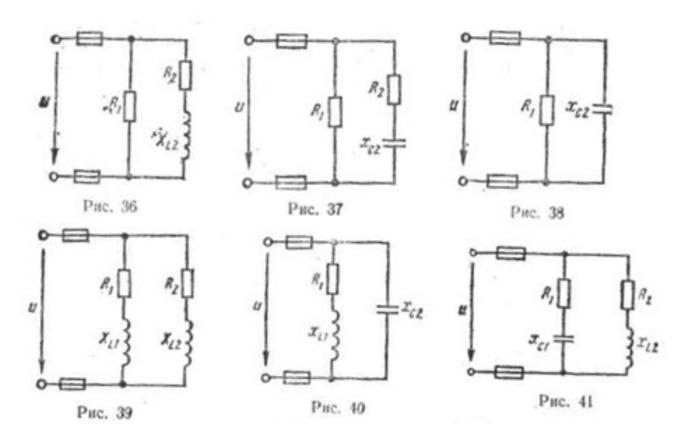


Таблица 1

Номер	Номер	R ₁ ,	R ₂ ,	X _{L1} ,	X _{1.2} ,	X _{C1} ,	X _{C2} ,	Дополнительный
вариант	рисунк	Ом	Ом	Ом	Ом	Ом	Ом	параметр


a	a							
01	16	4		6		3		O = 150 pop
			-	3	-	9	-	$Q_{L1} = 150 \text{ вар}$ U = 40 B
02	17	6	2	3	-		-	I
03	18	10	6	-	-	12	-	I = 5 A
04	19	6	2	6	-	-	-	$P_{R1} = 150 \text{ Br}$
05	20	4	4	3	3	-	<u>-</u>	$S = 360 B \cdot A$
06	21	3	-	-	-	2	2 2	I = 4 A
07	22	8	-	12	-	4	2	$P = 200 B_T$
08	23	16	-	10	8	6	-	U = 80 B
09	24	10	6	-	-	8	4	I = 2 A
10	25	2	2	5	-	6	2	Q=-192 вар
11	16	3	-	2	-	6	_	U = 50 B
12	17	4	4	4	-	10	_	I = 4 A
13	18	4	2	-	-	8	_	$U_{R1} = 20 B$
14	19	8	4	16	_	_	_	$S = 320 B \cdot A$
15	20	6	10	8	4	_	_	$P = 400 B_T$
16	21	6	_	_	_	5	3	$S = 160 B \cdot A$
17	22	12	_	4	_	12	8	I = 4 A
18	23	6	_	8	4	4	_	$P = 54 B_T$
19	24	8	4	_	_	6	10	$S = 180 B \cdot A$
20	25	8	8	12	_	4	2	P = 256 BT
20 21	16	6		10	_	2		I = 250 B I = 5 A
			-		-		-	
22	17	4	2	12	-	4	-	P = 24 BT
23	18	5	3	-	-	6	-	$S = 250 B \cdot A$
24	19	3	1	3	-	-	-	$Q_{L1} = 80 \text{ Bap}$
25	20	4	8	10	6	-	-	Q = 64 вар
26	21	8	-	-	-	4	2 2	U = 40 B
27	22	6	-	12	-	2	2	$U_{L1} = 60 B$
28	23	4	-	8	4	9	<u>-</u>	Q = 75 Bap
29	24	2	6	-	-	4	2	$P_{R2} = 24 B_T$
30	25	4	2	4	-	8	4	$Q_{L1} = 16$ вар
31	16	8	-	4	-	10	-	$P = 800 B_{T}$
32	17	3	3	2	-	10	-	$Q_{C1} = -160$ вар
33	18	2	2	-	-	3	-	$P = 100 \; B_{T}$
34	19	4	4	6	-	-	-	I = 2 A
35	20	2	4	2	6	-	-	U = 60 B
36	21	16	-	-	-	4	8	Q = -300 вар
37	22	4	-	10	-	4	3	$U_{C2} = 15 \text{ B}$
38	23	12	-	14	10	8	_	$U_{R1} = 60 \text{ B}$
39	24	4	2	_	_	4	4	Q_{C2} = -256 вар
40	25	1	2	6	_	8	2	$U_{C1} = 40 \text{ B}$
41	16	12	_	18	_	2	_	$S = 500 \text{ B} \cdot \text{A}$
42	17	8	4	20	_	4	_	$Q_{L1} = 500 \text{ Bap}$
43	18	2	1		_	4	_	$Q_{C1} = -100 \text{ Bap}$
44	19	10	6	12	_		_	U = 100 Bap
45	20	6	2	4	2	_	_	I=4 A
46	20 21	12	_			10	6	P = 48 BT
47	21 22	3		8		2	10	Q = -400 Bap
48	23	6	-	6 5	3	8		$U_{C1} = 16 \text{B}$
48	23 24		3	3	3	2	- 1	
		1		10	_		1	Q = - 48 вар
50	25	10	6	18	-	4	2	$S = 80 B \cdot A$

Тема: Расчет сложных цепей переменного тока.

Задание:

Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), образующие две параллельные ветви. Схема цепи приведена на соответствующем рисунке. Номер рисунка, значения всех сопротивлений, а также один дополнительный параметр заданы в табл. 1. Индекс «1» у дополнительного параметра означает, что он относится к первой ветви; индекс «2» — ко второй.

Начертить схему цепи и определить следующие величины, если они не заданы в табл. 1: 1) токи I_1 и I_2 в обеих ветвях; 2) ток I в неразветвленной части цепи; 3) напряжение U приложенное к цепи; 4) активную P реактивную Q и полную S мощности для всей цепи. Начертить в масштабе векторную диаграмму цепи.

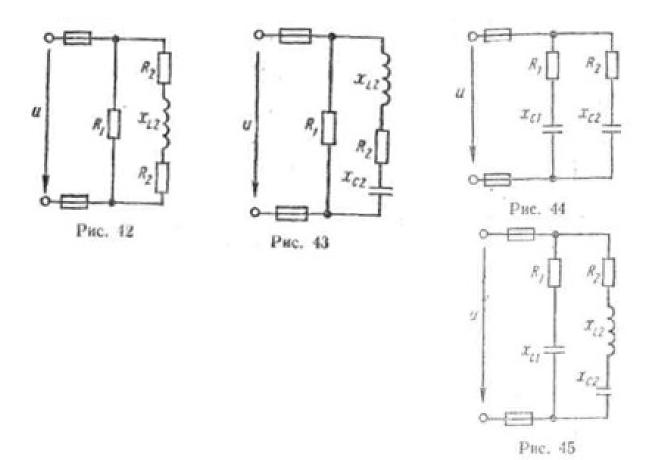


Таблица 1

№ вар	№ рис	R_1	R_2	X_{L1}	X_{L2}	X _{C1}	X_{C2}	Дополнительный
Ma Rah	м₂рис	Ом	Ом	Ом	Ом	Ом	Ом	параметр
01	36	5	3	-	4	-	-	Q = 64 вар
02	37	10	8	-	-	-	6	U = 20 B
03	38	4	-	-	-	-	5	$I_1 = 5 A$
04	39	4	6	3	8	-	-	$I_2 = 4 A$
05	40	16	-	12	-	-	10	$P = 256 \text{ B}_{\text{T}}$
06	41	24	16	-	12	32	-	U = 80 B
07	42	5	4	-	6	-	-	$I_2 = 6 A$
08	43	15	12	-	20	-	4	$P_1 = 240 \text{ BT}$
09	44	8	16	-	-	6	12	U = 100 B
10	45	4	8	-	12	3	6	$P_2 = 288 \text{ Br}$
11	36	10	6	-	8	-	-	U = 50 B
12	37	2	3	-	-	-	4	$I_1 = 5 A$
13	38	12	-	-	_	-	8	$I_2 = 6 A$
14	39	6	3	8	4	-	-	$P_2 = 300 \text{ BT}$
15	40	32	-	24	-	-	40	U = 120 B

16	41	12	8	-	10	16	-	Q _{L2} = 250 вар
17	42	2	2	-	3	-	-	$P_2 = 16 B_T$
18	43	5	8	-	4	-	10	U = 30 B
19	44	3	6	-	-	4	8	$I_2 = 4 A$
20	45	8	4	-	5	6	8	U = 20 B
21	36	4	4	-	3	-	-	$I_2 = 8 A$
22	37	5	4	-	-	-	3	$I_2 = 2 A$
23	38	2	-	-	-	-	4	U = 8 B
24	39	8	12	6	16	-	-	$Q_2 = 144$ вар
25	40	48	-	64	-	-	60	$U_{R1} = 144 B$
26	41	3	8	-	6	4	-	$I_1 = 5 A$
27	42	6	3	-	8	-	_	Q = 72 вар
28	43	10	6	-	12	-	4	Q = 32 вар

ПРАКТИЧЕСКАЯ РАБОТА №9 Расчет трехфазных электрических цепей

Задача № 1. Каждая фаза трехфазного симметричного потребителя (электродвигатель переменного тока) рассчитана на фазное напряжение U_{ϕ} и имеет активное R_{ϕ} и индуктивное x_{ϕ} сопротивления. Номинальное напряжение сети $U_{\text{ном } I}$. Выбрать схему соединения потребителя в зависимости от номинального напряжения сети $U_{\text{ном } I}$ (звездой или треугольником) и начертить ее. Определить активную P, реактивную Q и полную S мощности, расходуемые потребителем. Вычислить потребляемый линейный ток. Начертить векторную диаграмму.

Как нужно соединить фазы потребителя (звездой или треугольником) для включения его в сеть с номинальным напряжением $U_{\text{ном 2}}$? Начертить схему соединения потребителя, вычислить линейные токи в проводах при таком включении. Данные для своего варианта взять из табл.1.

Таблица 1.

Номер варианта	U_{ϕ}, B	R_{ϕ} , Ом	х _ф , Ом	U _{ном 1,} B	U _{HOM 2} , B
1	220	8,5	5,25	380	220
2	380	17	10,5	380	660
3	127	34	21	220	127
4	220	4,25	2,6	220	380
5	380	5,4	2,6	660	380
6	127	13,5	6,55	127	220
7	380	7,2	3,5	660	380
8	220	18	8,7	380	220
9	127	22,5	10,9	220	127
10	220	10,2	6,3	220	380

Задача № 2. В трехфазную четырехпроводную сеть включили трехфазную сушильную печь, представляющую собой симметричную активно-индуктивную нагрузку с сопротивлениями R_n и x_n , и лампы накаливания мощностью P_n каждая. Обмотки печи соединены треугольником лампы накаливания - звездой. Количество ламп в каждой фазе n_A , n_B и n_C задано. Номинальное напряжение сети $U_{\text{ном}}$. Схема сети приведена на рисунке. Определить показания амперметров A1, A2, A3, A4, A5 и вольтметра V_n , Начертить в масштабе векторную диаграмму цепи. Для соединения ламп накаливания, из которой найти числовое значение тока в нулевом проводе I_0 (показание амперметра A_0), Данные для своего варианта взять из табл. 2.

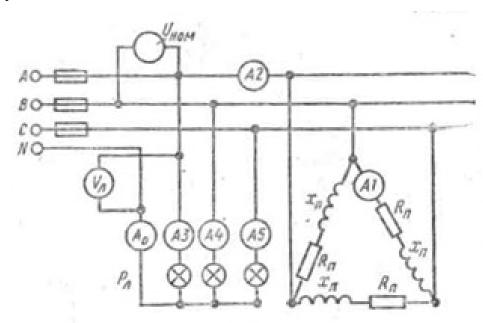


Таблица 2

							аолица 2
Номер	\mathbf{R}_{n}	X _n	\mathbf{P}_{π}	$\mathbf{n}_{\mathbf{A}}$	$n_{\rm B}$	\mathbf{n}_{C}	$\mathbf{U}_{ extsf{hom}}$
варианта	Ом	Ом	Вт	ШТ	ШТ	ШТ	В
1	4	3	200	50	80	30	380
2	6	8	300	40	30	60	220
3	12	16	500	20	40	30	380
4	3	4	200	80	50	40	220
5	8	6	150	100	60	50	220
6	18	12	300	50	70	40	380
7	32	24	500	30	40	60	380
8	8	6	150	80	100	50	220
9	4	3	300	60	40	30	380
10	24	32	200	40	80	80	220

ПРАКТИЧЕСКАЯ РАБОТА № 10 Расчет параметров асинхронного электродвигателя

Пепь:

- 1. Научиться пользоваться справочными данными и расчетными формулами
- 2. Научиться пользоваться вычислительной техникой

Общие сведения

Решаемая на практическом занятии задача направлена на определение основных параметров асинхронного электродвигателя. Для ее решения необходимо знать устройство и принцип действия асинхронного двигателя и зависимости между электрическим величинами, характеризующими его работу.

Перед решением задачи изучите соответствующий теоретический материал и рассмотрите типовой пример.

При частоте напряжения питающей сети 50 Гц возможные синхронные частоты вращения магнитного поля статора: 3000, 1500, 1000, 750, 600 об/мин и т.д. Тогда при частоте вращения ротора n_2 = 950 об/мин из приведенного выше ряда выбираем ближайшую к ней частоту вращения поля n_I = 1000 об/мин. Тогда можно определить скольжение ротора, даже не зная числа пар полюсов двигателя:

$$S = \frac{n_1 - n_2}{n_1} = \frac{1000 - 950}{1000} = 0.05$$

Из формулы для скольжения можно определить частоту вращения ротора

$$n_2 = n_1 \cdot (1 - S)$$

В настоящее время промышленность выпускает асинхронные двигатели с короткозамкнутым ротором серии 4А мощностью от 0,06 до 400 кВт (табл. 1). Обозначение типа электродвигателя расшифровывается так: 4 — порядковый номер серии; А — асинхронный; Х — алюминиевая оболочка и чугунные щиты (отсутствие буквы X означает, что корпус полностью выполнен из чугуна); В — двигатель встроен в оборудование; Н — исполнение защищенное IP23, для закрытых двигателей исполнения IP44 обозначение защиты не приводится; Р — двигатель с повышенным пусковым моментом; С — сельскохозяйственного назначения; цифра после буквенного обозначения показывает высоту оси вращения в мм (100, 112 и т. д.); буквы S, M, L — после цифр — установочные размеры по длине корпуса (S — станина самая короткая; М — промежуточная; L — самая длинная); цифра после установочного размера — число полюсов; буква У — Климатическое исполнение (для умеренного климата); последняя цифра — категория размещения: 1 — для работы па открытом воздухе, 3 — для закрытых неотапливаемых помещений.

Например. Необходимо расшифровать условное обозначение двигателя 4A250S4У3.

Это двигатель четвертой серии, асинхронный, корпус полностью чугунный (нет буквы X), высота оси вращения 250 мм, размеры корпуса по длине S (самый короткий), четырех полюсный, для умеренного климата, третья категория размещения.

Пример. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором типа 4AP160Б6У3 имеет номинальные данные: мощность $P_{\text{ном}} = 11$ кВт; напряжение $U_{\text{ном}} = 380$ В; частота вращения ротора $n_2 = 975$ об/мин; к.п.д. $\eta_{\text{ном}} = 0,855$; коэффициент мощности $\cos\phi_{\text{ном}} = 0,83$; кратность пускового тока $I_{\text{п}}/I_{\text{ном}} = 7$; кратность пускового момента $M_{\text{п}}/M_{\text{ном}} = 2,0$; способность к перегрузке $M_{\text{max}}/M_{\text{ном}} = 2,2$. Частота тока в сети $f_I = 50$ Гц.

Определить: 1) потребляемую мощность; 2) номинальный, пусковой и максимальный вращающие моменты; 3) номинальный и пусковой токи; 4) номинальное скольжение; 5) частоту тока в роторе. Расшифровать его условное обозначение. Оценить возможность пуска двигателя при номинальной нагрузке, если напряжение в сети при пуске снизилось на 20%?

Решение.

1. Мощность, потребляемая из сети

$$P_1 = \frac{P_{\text{max}}}{\eta_{\text{max}}} = \frac{11}{0.855} = 12.86 \text{ kBm}$$

2. Номинальный момент, развиваемый двигателем:

$$M = 9.55 \frac{P_{\text{\tiny MOM}}}{n_2} = \frac{9.55 \cdot 11 \cdot 1000}{975} = 107.7 \ H \cdot \text{M}$$

3. Максимальный и пусковой моменты:

$$M_{\text{max}} = 2.2 \cdot M_{\text{HOM}} = 2.2 \cdot 107,7 = 237 \ H \cdot M_{HOM} = 2 \cdot M_{\text{HOM}} = 2 \cdot 107,7 = 215.4 \ H \cdot M_{\text{HOM}}$$

4. Номинальный и пусковой токи:

$$I_{\text{MOSM}} = \frac{P_{\text{MOSM}} \cdot 1000}{\sqrt{3} \cdot U_{\text{MOSM}} \cdot \eta_{\text{MOSM}} \cdot \cos \varphi_{\text{MOSM}}} = \frac{11 \cdot 1000}{1,73 \cdot 380 \cdot 0,855 \cdot 0,83} = 23,6 \text{ A};$$

$$I_{II} = 7,0 \cdot I_{\text{MOSM}} = 7,0 \cdot 23,6 = 165 \text{ A}$$

5. Номинальное скольжение

$$S = \frac{n_1 - n_2}{n_1} = \frac{1000 - 975}{1000} = 0.025 = 2.5 \%$$

6. Частота тока в роторе

$$f_2 = f_1 \cdot s = 50 \cdot 0.025 = 1.25 \ \Gamma u$$

7. Условное обозначение двигателя расшифровываем так: двигатель четвертой серии, асинхронный, с повышенным скольжением (буква P), высота оси вращения 160 мм, размеры корпуса по длине S (самый короткий), шестиполюсный, для умеренного климата, третья категория размещения.

8.При снижении напряжения в сети на 20% на выводах двигателя остается напряжение 0,8 $U_{\scriptscriptstyle HOM}$. Так как момент двигателя пропорционален квадрату напряжения, то

$$\frac{M_{\pi}^{'}}{M_{\pi}} = \frac{(0.8 \cdot U_{\text{max}})^{2}}{U_{\text{max}}^{2}} = \frac{(0.8 \cdot 380)^{2}}{380^{2}} = 0.64$$

Отсюда

$$M_{II} = 0.64 \cdot M_{II} = 0.64 \cdot 215.4 = 138 \ H \cdot M$$

что больше $M = 107, 7 H \cdot M$. Таким образом, пуск двигателя возможен.

Порядок выполнения работы:

- 1. Отметьте в отчете наименование и цель занятия.
- 2. Отметьте в отчете исходные условия задачи и заданную схему.

Условия задачи и схемы цепей приведены в приложении.

- 3. Выполните предложенное задание. По необходимости, при выполнении задания практической работы, повторите теоретический материал и примеры, подобные заданию практической работы.
- 4. Оформите отчет по практической работе.

Для привода рабочей машины применяется трехфазный асинхронный электродвигатель с короткозамкнутым ротором. Используя данные для своего варианта, указанные в таблице 1, определить:

1)потребляемую мощность; 2) номинальный, пусковой и максимальный вращающие моменты; 3) номинальный и пусковой токи; 4) номинальное скольжение; 5) частоту тока в роторе.

Расшифровать его условное обозначение. Оценить возможность пуска двигателя при номинальной нагрузке, если напряжение в сети при пуске снизилось на 20%?

Таблица 1.

							таоли	ца т.
Номер варианта	Тип двигателя	Р _{ном2} , кВт	n ₂ , об/мин	соѕф _{ном}	$\frac{I_{_{H}}}{I_{_{9631}}}$	$rac{M_{\pi}}{M_{*\circ *}}$	$rac{M_{ ext{max}}}{M_{ ext{s23}}}$	$\eta_{\scriptscriptstyle{ ext{HOM}}}$
1	4Al00S2Y3	4	2880	0,89	7,5	2,0	2,2	0,86
2	4A100L2У3	5,5	2880	0,91	7,5	2,0	2,2	0,87
3	4А112М2СУ3	7,5	2900	0,88	7,5	2,0	2,2	0,87
4	4Л132М2СУ3	11	2900	0,9	7,5	1,6	2,2	0,88
5	4A90L4У3	2,2	1400	0,83	6,0	2,0	2,2	0,8
6	4A100S4У3	3	1425	0,83	6,5	2,0	2,2	0,82
7	4A100L4Y3	4,0	1425	0,84	6,5	2,2	2,2	0,84
8	4А112М4СУ1	5,5	1450	0,85	7,0	2,0	2.2	0,85
9	4А132М4СУ1	11	1450	0,87	7,5	2,0	2,2	0,87
10	4AP160S4У3	15	I465	0,87	7,5	2,0	2,2	0,865
11	4AP160M4У3	18,5	1465	0,87	7,5	2,0	2,2	0,885
12	4AP180S4У3	22	1460	0,87	7,5	2,0	2,2	0,89
13	4AP180М4У3	30	1460	0,87	7,5	2,0	2,2	0,9
14	4A100L6У3	2,2	950	0,73	5,5	2,0	2,0	0,81
15	4AP160S6У3	11	975	0,83	7,0	2,0	2,2	0,855
16	4АР160М6У3	15	975	0,83	7,0	2,0	2,2	0,875
17	4АР180М6У3	18,5	970	0,8	6,5	2,0	2,2	0,87
18	4A250S6У3	45	985	0,89	6,5	1,2	2,0	0,92
19	4А250М6У3	55	985	0,89	7,0	1,2	2,0	0,92
20	4АН250М6У3	75	985	0,87	7,5	1,2	2,5	0,93
21	4A100L8У3	1,5	725	0,65	6,5	1,6	1,7	0,74
22	4AP160S8У3	7,5	730	0,75	6,5	1,8	2,2	0,86
23	4A250S8У3	37	740	0,83	6,0	1,2	1,7	0,9
24	4A250M8У3	45	740	0,84	6,0	1,2	1,7	0,91
25	4АН250М8У3	55	740	0,82	6,0	1,2	2,0	0,92

Расчет параметров генераторов

ЦЕЛЬ: рассчитать ток генератора в номинальном режиме, ЭДС генератора, номинальное изменение напряжения, ток в обмотке возбуждения, ток в цепи якоря при номинальной нагрузке.

Генератор постоянного тока имеет: номинальную мощность P_2 ; номинальное напряжение U; частоту вращения n; номинальный ток генератора I; ток в цепи возбуждения I_B ; ток в цепи якоря I_S ; сопротивление обмоток цепи обмотки возбуждения R_B ; сопротивление в цепи якоря R_S , приведенное к рабочей температуре; ЭДС якоря E; электромагнитный момент при номинальной нагрузке $M_{\text{эм}}$; электромагнитная мощность $P_{\text{эм}}$; мощность приводного двигателя P_1 ; КПД в номинальном режиме η .

Определить: для выбранного варианта значения параметров генератора постоянного тока, не указанные в таблицах 1, 2.

Таблица 1 **Параметры генератора**

	P_2	U	n	I	$I_{ m B}$	I_{H}	R_{B} ,	$R_{\mathfrak{A}}$
№	кВт	В	об/мин	A	A	A	Ом	Ом
1	24	230	1450	_	_	_	150	0,3
2	_	110	3000	_	_	17	Нет	0,55
3	_	220	1000	15,6	Нет		Нет	1
4	_	230	_	87	_	_	100	0,15
5	_	110	2000	25	_	_	Нет	_
6	_	220	630	80	Нет	_	Нет	0,144
7	_	460	_	_	4	_	_	_
8	_	110	3000	95	_	_	Нет	_
9	_	220	630	_	Нет	80	Нет	0,144
10	18	230	1500		_	80	_	_
11	_	110	3000	ı	_	21,5	Нет	_
12		220	460	-	Нет	405	5,5	0,008
13	45	_	1000	97,8	_	1	92	_
14	_	110	4000	260	_	ı	Нет	_
15	_	220	1000	-	Нет	16	0,8	0,9
16	_	110	3600	-	1,8	34	_	_
17	_	110	4000	-	_	15	Нет	_
18	_	220	1000	15,6	Нет	ı	Нет	1
19	_	230	_	90	_	1	90	0,2
20	_	110	3000	_	_	170	Нет	_
21	_	220	630	_	Нет	175	4,6	_
22	20	230	1450	_	_	92,5	_	_
23	_	110	3000	95	_	_	Нет	_
24	_	220	460	405	Нет		Нет	0,009
25	_	110	3000	_	1,5	12	_	_

N₂	<i>E</i> B	М₃м Н∙м	$P_{\scriptscriptstyle \mathrm{ЭM}}$ к \mathbf{B} т	P_1 к \mathbf{B} т	η %	Способ возбуждения
1	_	1	_	_	90	параллельное
2	_	_	_	_	89	последовательное
3	_	_	_	_	87	независимое
4	_	2	_	2	_	параллельное
5	_	1	1	_	82	последовательное
6	_	_	18,52	_	87	независимое
7	480	5	55	_	88	параллельное
8	_	3		_	85	последовательное
9	_	_	_	_	86	независимое
10	240	_	_	2	_	параллельное
11	_	7		_	89	последовательное
12	_	_	1	_	85	независимое
13	477	_			88	параллельное
14	_	7			88	последовательное
15	_	_	_	_	85	независимое
16	_	1		_	85	параллельное
17	_	4	_	_	80	последовательное
18	_	_	_	_	88	независимое
19	_	2	_	2	_	параллельное
20	_	6	_	_	90	последовательное
21	_	_	42,52	_	82	независимое
22	235	_	_	2	_	параллельное
23	_	3	_		89	последовательное
24	_	_	_	_	80	независимое
25		_	1,4	_	75	параллельное

Примеры решения задач

Пример 1. Генератор постоянного тока параллельного возбуждении имеет номинальную мощность $P_2 = 10$ кВт; номинальное напряжение U = 230 В; частоту вращения n = 1450об/мин; сопротивление обмоток цепи обмотки возбуждения $R_{\rm B}$ =150 Ом; сопротивление обмоток

якоря $R_{\rm H} = 0.3$ Ом; КПД в номинальном режиме $\eta = 86.5$ %. Падением напряжения в щеточном контакте пренебречь.

Определить: ток генератора, ток в цепи возбуждения, ток в цепи якоря, ЭДС якоря, электро-

магнитный момент, электромагнитная мощность, мощность приводного двигателя. Генератор работает при номинальной нагрузке.

Решение:

Ток генератора:
$$I = \frac{p_2}{U} = \frac{10000}{230} = 43,5A.$$

Ток в обмотке возбуждения:
$$I_{\rm B} = \frac{U}{R_B} = \frac{230}{150} = 1,5A.$$

Ток в цепи якоря: $I_{\rm H} = I + I_{\rm B} = 43.5 + 1.5 = 45$ А.

ЭДС якоря:
$$E = U + I_{\text{Я}} \cdot R_{\text{Я}} = 230 + 45 \cdot 0.3 = 243.5 \text{ B}.$$

$$\frac{P_{3M}}{7} = 9.55 \frac{10957}{1450} = 72 \text{ H} \cdot \text{M}$$

Электромагнитная мощность: $P_{\text{эм}} = E \cdot I_{\text{Я}} = 243,5 \cdot 45 = 10957 \; \text{Вт}$. Электромагнитный момент: $M_{\text{эм}} = 9,55 \frac{p_{\text{зм}}}{n} = 9,55 \frac{10957}{1450} = 72 \; \text{H} \cdot \text{м}$

Пример 2. В генераторе постоянного тока независимого возбуждения с номинальным напряжением U = 440 В установился ток I = 64 А при частоте якоря n = 2800 об/мин. В новом режиме работы нагрузка и магнитный поток не изменились, но частота якоря стала $n^* = 740$ об/мин.

Определить напряжение и ток в генераторе в новом режиме.

Решение:

В генераторе независимого возбуждения ток генератора равен току якоря, т.е. $I = I_{\rm R}$.

В номинальном режиме:

Напряжение на нагрузке $U = I \cdot R_{\rm H}$.

ЭДС якоря $E = U + I \cdot R_{\rm H} = I \cdot R_{\rm H} + I \cdot R_{\rm H}$, с другой стороны $E = C_{\rm E} \cdot n \cdot \Phi$.

Получили: $I \cdot R_H + I \cdot R_S = C_E \cdot n \cdot \Phi$.

В новом режиме, соответственно:

$$E^* = U^* + I^* \cdot R_{\mathcal{A}} = I^* \cdot R_{\mathcal{H}} + I^* \cdot R_{\mathcal{A}} = C_E \cdot n^* \cdot \Phi.$$

Возьмем отношение, полученных уравнений и получим:

$$I^* = \frac{n^*}{n} \cdot I = \frac{740}{2800} \cdot 64 = 16,9$$
 A и

$$U^* = \frac{U}{I} \cdot I^* = \frac{440}{64} \cdot 16,9 = 116,3$$

Пример 3. В электродвигателе постоянного тока с параллельным возбуждением, имеющим номинальные данные: мощность на валу P_2 =130 кВт; напряжение U = 220 В; ток, потребляемый из сети I = 640 А; частоту вращения n = 600 об/мин; сопротивление цепи обмотки возбуждения $R_{\rm B}$ = 43 Ом; сопротивление обмотки якоря $R_{\rm H}$ = 0,007 Ом.

Определить номинальные суммарные и электрические потери в обмотках.

Решение:

Ток в обмотке возбуждения: $I_{\rm B} = \frac{U}{R_B} = \frac{230}{43} = 5,116$ Ом.

Ток в цепи якоря: $I_{\rm A} = I - I_{\rm B} = 640$ -5,116 = 634,884 A.

Электрические потери мощности

в цепи якоря: $\Delta P_{\text{эл } \text{Я}} = I_{\text{Я}}^2 \cdot R_{\text{Я}} = 634,884^2 \cdot 0,007 = 2821,544 \text{ BT};$

в обмотке возбуждения:

$$\Delta P_{\text{3d B}} = I_{\text{B}}^2 \cdot R_{\text{B}} = U \cdot I_{\text{B}} = 220 \cdot 5,116 = 1125,52 \text{ BT}.$$

Суммарные потери мощности:

$$\Sigma \Delta P = \Delta P_{\text{эд B}} + \Delta P_{\text{эд B}} = 1125,52 + 2821,544 = 3947,064 \text{ BT}$$
.

Пример 4. Двигатель постоянного тока последовательного возбуждения включен в сеть с напряжением U = 220 В при номинальном вращающем моменте M = 101,7 Н·м развивает частоту вращения якоря n = 750 об/мин. КПД двигателя $\eta = 75$ %; сопротивление цепи обмотки возбуждения $R_{\rm B} = 0,197$ Ом; сопротивление обмотки якоря $R_{\rm A} = 0,443$ Ом. Пуск двигателя осуществляется при пусковом реостате $R_{\rm пуск} = 1,17$ Ом. Пусковой ток приводит к увеличению магнитного потока в 1,2 раза.

Определить номинальные мощность на валу, электромагнитную и потребляемую мощности; суммарные потери в двигателе; пусковой ток и пусковой момент.

Решение:

Мощность на валу:
$$P_2$$
= M $\frac{\pi \cdot n}{30} = 101,7 \frac{3,14 \cdot 750}{30} = 7983,45$ Вт

Потребляемая мощность:
$$P_1 = \frac{p_2}{\eta/100} = \frac{7983,45}{0,75} = \frac{10644,4 \text{ BT}}{10644,4 \text{ BT}}$$

Суммарные потери: $\Sigma \Delta P = P_1 - P_2 = 10644, 4 - 7983, 45 = 2660, 95 \ Bt.$

Т.к. двигатель с последовательным возбуждением, тогда ток якоря находим:

$$I_{\rm H} = I_{\rm B} = I = \frac{P_1}{U} = \frac{10644.4}{220} = 48.38 \text{ A}$$

ЭДС якоря: $E = U - I \cdot (R_{\text{A}} + R_{\text{B}}) = 220 - (0,443 + 0,197) \cdot 48,38 = 189,04 \text{ B}.$

Электромагнитная мощность:
$$P_{\text{эм}} = E \cdot I = 189,04 \cdot 48,38 = 9145,6 \; \text{Вт}$$
 . Пусковой ток: $I_{\text{пуск}} = \frac{U}{R_{\text{Я}} + R_{\text{пуск}} + R_{\text{В}}} = \frac{220}{1,443 + 0,197 + 1,17} = 121,547 \; \text{A}$

Номинальный момент: $M = C_{\rm M} \cdot \Phi \cdot I = 101,7$,

пусковой момент: $M_{\text{пуск}} = C_{\text{M}} \cdot \Phi_{\text{пуск}} \cdot I_{\text{пуск}} = C_{\text{M}} \cdot 1, 2 \cdot \Phi \cdot I_{\text{пуск}}$.

Возьмем отношение, полученных уравнений и получим:
$$M_{\text{пуск}} = \frac{1,2 \cdot I_{\text{пуск}} \cdot M}{I} = \frac{1,2 \cdot 121,547 \cdot 101,7}{48,38} = 305,1 \text{ H} \cdot \text{м}$$

Кратность

$$\frac{I_{\text{пуск}}}{I} = \frac{121,547}{48/380,75} = 2,5$$

пускового момента:
$$\frac{M_{\text{пуск}}}{M} = \frac{305,1}{101,7} = 3$$