МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УДМУРТСКОЙ РЕСПУБЛИКИ

АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ УДМУРТСКОЙ РЕСПУБЛИКИ «ТЕХНИКУМ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ИМЕНИ А.В. ВОСКРЕСЕНСКОГО»

ПРОГРАММА ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА специальность 11.02.17 Разработка электронных устройств и систем квалификации выпускника – техник

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОГО ПРЕДМЕТА УП. 03 Математика

Форма обучения - очная

Фонд оценочных средств рассмотрен и		
одобрен на заседании методического		
объединения профессионального цикла		
Председатель методического		
объединения общеобразовательного		
цикла		
Попова С.И.		
Протокол №6		
от « 16» 02 20 23 г.		

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 11.02.17 Разработка электронных устройств и систем

УТВЕРЖДАЮ

Заместитель директора по УМР автономного профессионального образовательного учреждения Удмуртской Республики «Техникум радиоэлектроники и информационных технологий имени А.В. Воскресенского»

<u>Моия 10.М. Могево.</u>1 «<u>16» 02. 20 13</u>г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОГО ПРЕДМЕТА УП. 03 Математика

для специальности 11.02.17 Разработка электронных устройств и систем

Разработчик: Москова О.М. АПОУ УР «ТРИТ им. А.В. Воскресенского»

Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу предмета УП.03 Математика.

ФОС включают контрольно-оценочные и контрольно-измерительные материалы для проведения входного, текущего контроля и промежуточной аттестации.

ФОС разработан на основании

- примерной программы учебного предмета;
- рабочей программы учебного предмета.

1. Паспорт оценочных средств

В результате контроля и оценки по предмету осуществляется комплексная проверка следующих умений (У) и знаний (З):

Содержание	Характеристика основных видов деятельности студентов	
обучения	(на уровне учебных действий)	
Введение	Ознакомление с ролью математики в науке, технике, экономике,	
	информационных технологиях и практической деятельности.	
	Ознакомление с целями и задачами изучения математики при освоении	
	специальностей СПО	
АЛГЕБРА		
Развитие понятия	Выполнение арифметических действий над числами, сочетая устные и	
о числе	письменные приемы.	
	Нахождение приближенных значений величин и погрешностей	
	вычислений (абсолютной и относительной); сравнение числовых	
	выражений.	
	Нахождение ошибок в преобразованиях и вычислениях (относится ко	
	всем пунктам программы)	
Корни, степени,	Ознакомление с понятием корня <i>n</i> -й степени, свойствами радикалов и	
лога-	правилами сравнения корней.	
рифмы	Формулирование определения корня и свойств корней. Вычисление и	
-	сравнение корней, выполнение прикидки значения корня.	
	Преобразование числовых и буквенных выражений, содержащих	
	радикалы.	
	Выполнение расчетов по формулам, содержащим радикалы,	
	осуществляя необходимые подстановки и преобразования.	
Определение равносильности выражений с радикалами. Ре иррациональных уравнений.		
Нахождение значений степени, используя при необходимо		
	инструментальные средства.	
	Записывание корня n -й степени в виде степени с дробным показателем	
	и наоборот. Формулирование свойств степеней. Вычисление степеней с	
	рациональным показателем, выполнение прикидки значения степени,	
	сравнение степеней.	
	Преобразование числовых и буквенных выражений, содержащих	
	степени, применяя свойства. Решение показательных уравнений.	
	Ознакомление с применением корней и степеней при вычислении	
	средних, делении отрезка в «золотом сечении». Решение прикладных	
	задач на сложные проценты.	
Преобразование	Выполнение преобразований выражений, применение формул,	
алгебраических	связанных со свойствами степеней и логарифмов.	
выражений	Определение области допустимых значений логарифмического	
-	выражения. Решение логарифмических уравнений.	
ОСНОВЫ ТРИГОН		

Основные понятия	Изучение радианного метода измерения углов вращения и их связи с	
	градусной мерой. Изображение углов вращения на окружности,	
	соотнесение величины угла с его расположением.	
	Формулирование определений тригонометрических функций для углов	
	поворота и острых углов прямоугольного треугольника и объяснение	
	их взаимосвязи	
Основные	Применение основных тригонометрических тождеств для вычисления	
тригонометрические		
тождества		
Преобразования	Изучение основных формул тригонометрии: формулы сложения,	
простейших	удвоения, преобразования суммы тригонометрических функций в	
тригонометрических	произведение и произведения в сумму и применение при вычислении	
выражений	значения тригонометрического выражения и упрощения его.	
	Ознакомление со свойствами симметрии точек на единичной	
	окружности и применение их для вывода формул приведения	
Простейшие	Решение по формулам и тригонометрическому кругу простейших	
тригонометрические	тригонометрических уравнений.	
уравнения и	Применение общих методов решения уравнений (приведение к	
неравенства	линейному, квадратному, метод разложения на множители, замены	
	переменной) при решении тригонометрических уравнений.	
	Умение отмечать на круге решения простейших тригонометрических	
	неравенств	
Арксинус,	Ознакомление с понятием обратных тригонометрических функций.	
арккосинус,	Изучение определений арксинуса, арккосинуса, арктангенс числа,	
арктангенс числа	формулирование их, изображение на единичной окружности,	
	применение при решении уравнений	
ФУНКЦИИ, ИХ СВО		
Функции.	Ознакомление с понятием переменной, примерами зависимостей между	
Понятие о	переменными.	
непрерывности	Ознакомление с понятием графика, определение принадлежности точки	
функции	графику функции. Определение по формуле простейшей зависимости,	
	вида ее графика. Выражение по формуле одной переменной через	
	другие.	
	Ознакомление с определением функции, формулирование его.	
C " 1	Нахождение области определения и области значений функции	
Свойства функции.	Ознакомление с примерами функциональных зависимостей в реальных	
Графическая интерпретация.	процессах из смежных дисциплин. Ознакомление с доказательными рассуждениями некоторых свойств	
Примеры	линейной и квадратичной функций, проведение исследования	
функциональных	линейной и квадратичной функции, проведение исследования линейной, кусочно-линейной, дробно-линейной и квадратичной	
зависимостей в	функций, построение их графиков. Построение и чтение	
реальных	графиков функций. Исследование функции.	
процессах и	Составление видов функций по данному условию, решение задач на	
явлениях	экстремум.	
	Выполнение преобразований графика функции	
Обратные функции		
1 1/	графика обратной функции, нахождение ее области определения и	
	области значений. Применение свойств функций при исследовании	
	уравнений и решении задач на экстремум.	
	Ознакомление с понятием сложной функции	
Степенные,	Вычисление значений функций по значению аргумента.	
показательные,	Определение положения точки на графике по ее координатам и	
логарифмические и	наоборот.	
тригонометрические	Использование свойств функций для сравнения значений степеней и	
функции.	логарифмов.	

Обратные Построение графиков степенных и логарифмических функций. тригонометрические Решение показательных и логарифмических уравнений и неравенств по функции известным алгоритмам. Ознакомление с понятием непрерывной периодической функции, формулирование свойств синуса и косинуса, построение их графиков. Ознакомление с понятием гармонических колебаний и примерами гармонических колебаний для описания процессов в физике и других областях знания. Ознакомление с понятием разрывной периодической функции, формулирование свойств тангенса и котангенса, построение их графиков. Применение свойств функций для сравнения значений тригонометрических функций, решения тригонометрических уравнений. Построение графиков обратных тригонометрических функций и определение по графикам их свойств. Выполнение преобразования графиков НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА Последовательности Ознакомление с понятием числовой последовательности, способами ее задания, вычислениями ее членов. Ознакомление с понятием предела последовательности. Ознакомление с вычислением суммы бесконечного числового ряда на примере вычисления суммы бесконечно убывающей геометрической прогрессии. Решение задач на применение формулы суммы бесконечно убывающей геометрической прогрессии Производная и ее Ознакомление с понятием производной. применение Изучение и формулирование ее механического и геометрического смысла, изучение алгоритма вычисления производной на примере вычисления мгновенной скорости и углового коэффициента касательной. Составление уравнения касательной в общем виде. Усвоение правил дифференцирования, таблицы производных элементарных функций, применение для дифференцирования функций, составления уравнения касательной. Изучение теорем о связи свойств функции и производной, формулировка их. Проведение с помощью производной исследования функции, заданной формулой. Установление связи свойств функции и производной по их графикам. Применение производной для решения задач на нахождение наибольшего, наименьшего значения и на нахождение экстремума Первообразная Ознакомление с понятием интеграла и первообразной. Изучение правила вычисления первообразной и теоремы Ньютона и интеграл Лейбница. Решение задач на связь первообразной и ее производной, вычисление первообразной для данной функции. Решение задач на применение интеграла для вычисления физических величин и площадей

УРАВНЕНИЯ И НЕРАВЕНСТВА

Уравнения и системы уравнений Неравенства и системы неравенств

Ознакомление с простейшими сведениями о корнях алгебраических уравнений, понятиями исследования уравнений и систем уравнений. Изучение теории равносильности уравнений и ее применения. Повторение записи решения стандартных уравнений, приемов преобразования уравнений для сведения к стандартному уравнению.

0.7020	Dawayyya nauyyaya ya y
с двумя	Решение рациональных, иррациональных, показательных и
переменными	тригонометрических уравнений и систем. Использование свойств и графиков функций для решения уравнений.
	Повторение основных приемов решения систем.
	Решение уравнений с применением всех приемов (разложения на
	множители, введения новых неизвестных, подстановки, графического
	множители, введения новых неизвестных, подстановки, графического метода).
	Решение систем уравнений с применением различных способов.
	Ознакомление с общими вопросами решения неравенств и
	использование свойств и графиков функций при решении неравенств.
	Решение неравенств и систем неравенств с применением различных
	способов.
	Применение математических методов для решения содержательных
	задач из различных областей науки и практики. Интерпретирование
	результатов с учетом реальных ограничений
ЭЛЕМЕНТЫ КОМБ	инаторики, теории вероятностей и статистики
Основные понятия	Изучение правила комбинаторики и применение при решении
комбинаторики	комбинаторных задач.
1	Решение комбинаторных задач методом перебора и по правилу
	умножения.
	Ознакомление с понятиями комбинаторики: размещениями,
	сочетаниями, перестановками и формулами для их вычисления.
	Объяснение и применение формул для вычисления размещений,
	перестановок и сочетаний при решении задач.
	Ознакомление с биномом Ньютона и треугольником Паскаля.
	Решение практических задач с использованием понятий и правил
	комбинаторики
Элементы теории	Изучение классического определения вероятности, свойств
вероятностей	вероятности, теоремы о сумме вероятностей.
	Рассмотрение примеров вычисления вероятностей. Решение задач на
	вычисление вероятностей событий
Представление	Ознакомление с представлением числовых данных и их
данных	характеристиками.
(таблицы,	Решение практических задач на обработку числовых данных,
диаграммы,	вычисление их характеристик
графики)	
ГЕОМЕТРИЯ	
Прямые и	Формулировка и приведение доказательств признаков взаимного
плоскости	расположения прямых и плоскостей. Распознавание на чертежах и
в пространстве	моделях различных случаев взаимного расположения прямых и
	плоскостей, аргументирование своих суждений. Формулирование определений, признаков и свойств параллельных и
	перпендикулярных плоскостей, двугранных и линейных углов.
	Выполнение построения углов между прямыми, прямой и плоскостью,
	между плоскостями по описанию и распознавание их на моделях.
	Применение признаков и свойств расположения прямых и плоскостей
	при решении задач.
	Изображение на рисунках и конструирование на моделях
	перпендикуляров и наклонных к плоскости, прямых, параллельных
	плоскостей, углов между прямой и плоскостью и обоснование
	построения.
	Решение задач на вычисление геометрических величин. Описывание
	расстояния от точки до плоскости, от прямой до плоскости, между
	плоскостями, между скрещивающимися прямыми, между
	произвольными фигурами в пространстве.

	Формулирование и доказывание основных теорем о расстояниях (теорем существования, свойства).
	Изображение на чертежах и моделях расстояния и обоснование своих
	суждений. Определение и вычисление расстояний в пространстве.
	Применение формул и теорем планиметрии для решения задач.
	Ознакомление с понятием параллельного проектирования и его
	свойствами. Формулирование теоремы о площади ортогональной
	проекции многоугольника.
	Применение теории для обоснования построений и вычислений.
	Аргументирование своих суждений о взаимном расположении
	пространственных фигур
Многогранники	Описание и характеристика различных видов многогранников,
	перечисление их элементов и свойств.
	Изображение многогранников и выполнение построения на
	изображениях и моделях многогранников.
	Вычисление линейных элементов и углов в пространственных
	конфигурациях, аргументирование своих суждений.
	Характеристика и изображение сечения, развертки многогранников,
	вычисление площадей поверхностей.
	Построение простейших сечений куба, призмы, пирамиды. Применение
	фактов и сведений из планиметрии.
	Ознакомление с видами симметрий в пространстве, формулирование
	определений и свойств. Характеристика симметрии тел вращения и
	многогранников.
	Применение свойств симметрии при решении задач.
	Использование приобретенных знаний для исследования и
	моделирования несложных задач.
	Изображение основных многогранников и выполнение рисунков по
TD.	условиям задач
Тела и поверхности	Ознакомление с видами тел вращения, формулирование их
вращения	определений и свойств.
	Формулирование теорем о сечении шара плоскостью и плоскости,
	касательной к сфере.
	Характеристика и изображение тел вращения, их развертки, сечения.
	Решение задач на построение сечений, вычисление длин, расстояний,
	углов, площадей. Проведение доказательных рассуждений при решении
	задач.
	Применение свойств симметрии при решении задач на тела вращения,
	комбинацию тел.
	Изображение основных круглых тел и выполнение рисунка по условию
	задачи
Измерения в	Ознакомление с понятиями площади и объема, аксиомами и
геометрии	свойствами.
	Решение задач на вычисление площадей плоских фигур с применением
	соответствующих формул и фактов из планиметрии.
	Изучение теорем о вычислении объемов пространственных тел,
	решение задач на применение формул вычисления объемов.
	Изучение формул для вычисления площадей поверхностей
	многогранников и тел вращения.
	Ознакомление с методом вычисления площади поверхности сферы.
	Решение задач на вычисление площадей поверхности
	пространственных тел
Координаты и	Ознакомление с понятием вектора. Изучение декартовой системы
векторы	координат в пространстве, построение по заданным координатам точек
1	и плоскостей, нахождение координат точек.
	и плоскостеи, нахождение координат точек.

Нахождение уравнений окружности, сферы, плоскости. Вычисление расстояний между точками.

Изучение свойств векторных величин, правил разложения векторов в трехмерном пространстве, правил нахождения координат вектора в пространстве, правил действий с векторами, заданными координатами. Применение теории при решении задач на действия с векторами. Изучение скалярного произведения векторов, векторного уравнения прямой и плоскости. Применение теории при решении задач на действия с векторами, координатный метод, применение векторов для вычисления величин углов и расстояний.

Ознакомление с доказательствами теорем стереометрии о взаимном расположении прямых и плоскостей с использованием векторов

2. Распределение типов контрольных заданий по элементам знаний и умений

Основной целью оценки освоения предмета является оценка умений и знаний.

Оценка освоения умений и знаний осуществляется с использованием следующих форм и методов контроля: устный опрос, подготовка сообщений по заданной теме, выполнение практических и контрольных работ, тестирование, самостоятельные работы.

3. Задания для оценки освоения предмета

ВЫПОЛНЕНИЕ ВХОДНОГО КОНТРОЛЯ по предмету УП.03 «Математика» по специальности 11.02.17 Разработка электронных устройств и систем. Контроль проводится в форме контрольной работы.

Количество вариантов: 2 варианта. В каждом варианте 4 разноуровневых задания.

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка.

Критерии оценивания:

При оценке контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если студент выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

- 4 безошибочно выполненные задания под буквой «в» оценка «5»
- 4 безошибочно выполненные задания под буквой «б» оценка «4»
- 4 безошибочно выполненные задания под буквой «а» оценка «3»

Входной контроль

ВАРИАНТ 1

ВАРИАНТ 2

a)
$$\left(\left(\frac{1}{4}\right)^{-1}\right)^2$$

$$6) ((-0.1)^{-1})^2$$

B)
$$125^{-3} \div (0,2^{-4})^{-2}$$

a)
$$6x - 10.2 = 4x - 2.2$$
;
 $4x^2 - 11 = x^2 - 11 + 9x$;
 $\frac{x^2 - 6}{x - 3} = \frac{x}{x - 3}$

$$a) \left(\left(\frac{1}{2} \right)^{-2} \right)^{-2}$$

6)
$$((-0,1)^2)^{-1}$$

B)
$$32^{-2} \div (0,5^{-3})^{-3}$$

2. Решите уравнения:

a)
$$8x - 15,3 = 6x - 3,3$$
;
 $7x + 3 = 2x^2 + 3x + 3$;
 $\frac{x^2 + 2x}{x + 4} = \frac{8}{x + 4}$

6)
$$2x - \frac{4}{7} = 0$$
;
 $(2x+1)(x-4) = (x-2)(x+2)$;
 $\frac{2x-3}{x} - \frac{1}{x+2} = \frac{4x-6}{x^2+2x}$
B) $4 \cdot (0,25x-6) = 8(0,125x+3)$;
 $3 - (4x+1)(3-x) = x^2$;
 $\frac{3x^2+2x-1}{x+1} = 5$

6)
$$3x - \frac{6}{11} = 0$$
;
 $(2x - 9)(x + 1) = (x - 3)(x + 3)$;
 $\frac{3x + 1}{x} + \frac{5}{x - 2} = \frac{6x - 2}{x^2 - 2x}$
B) $16 \cdot (0,25x - 1) = 5(0,8x - 3,2)$;
 $x^2 - (2x - 3)(1 - x) = 3$;
 $\frac{5x^2 - 4x - 1}{x - 1} = 6$

3. Решите систему неравенств:

a)
$$\begin{cases} 6x + 3 > 0, \\ 7 - 4x < 0 \end{cases}$$

$$\begin{cases} \frac{x}{3} \equiv 0, \\ 1 - 3x \equiv 2x - 1, \\ 3 - x = 0. \end{cases}$$

B)
$$\begin{cases} 4x^2 - 1 \leq 0, \\ x^2 > 0. \end{cases}$$

a)
$$\begin{cases} 2 - 10x > 8, \\ 3x + 4 < 4. \end{cases}$$

$$\begin{cases}
\frac{x}{2} \leq 0, \\
\frac{2-x}{2} \leq 0, \\
\frac{2-x}{2} \leq 0,
\end{cases}$$

B)
$$\begin{cases} (x-1)^2 > 0, \\ 169 - x^2 \ge 0 \end{cases}$$

4. а) Выразите из формулы:

$$V = \sqrt{2gh} \Rightarrow h = ?$$

$$S = \frac{V^2}{2a} \Rightarrow V = ?$$

4. б) Постройте график функции укажите возрастающий или убывающий она является:

$$y = -2.5x$$

$$y = 2x - 3$$

4. в) Постройте график функции:

$$v = x^2 - 2x + 3$$

$$y = -x^2 + 2x - 4$$

Какие значения принимает функция, если $0 \le x \le 3$?

Эталон решения І Вариант

1

a)
$$\left(\left(\frac{1}{4} \right)^{-1} \right)^2 = 4^2 = 16$$

Ответ: 16

6)
$$((-0.1)^{-1})^2 = (-10)^2 = 100$$

Ответ: 100

B)
$$125^{-3} \div (0,2^{-4})^{-2} = \frac{1}{125^{3}} \div (5^{4})^{-2} = \frac{1}{125^{3}} \cdot \frac{5^{8}}{1} = \frac{1}{(5^{3})^{3}} \cdot 5^{8} = 5^{-1} = \frac{1}{5}$$

Other: $\frac{1}{5}$

2.

$$6x - 10,2 = 4x - 2,2
6x - 4x = 10,2 - 2,2
2x = 8
$$x^2 - 6
x - 3 = \frac{x}{x - 3}$$$$

$$x = 4$$

$$x^2 - x - 6 = 0$$

$$II = 1 + 24 = 25$$

$$x_{1,2} = \frac{1 \pm 5}{2} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Ответ: -2

$$4x^{2} - 11 = x^{2} - 11 + 9x$$

$$4x^{2} - x^{2} = 11 - 11 + 9x$$

$$3x^{2} - 9x = 0$$

$$3x(x - 3) = 0$$

$$x = 0 \quad \text{или} \quad x = 3$$

$$0 \text{TBET:} \left[0;3 \right]$$

$$6)$$

$$2x - \frac{4}{7} = 0$$

$$2x = \frac{4}{7}$$

$$x = \frac{4}{7} \div 2$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

$$x = 0$$

$$x = 1$$

$$x = 0$$

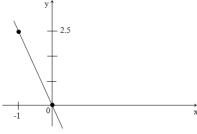
$$x = 0$$

$$x = 1$$

$$x$$

OTBET: (3, 3)3.
a) $\begin{cases} \frac{6x+3-6}{7-4x-6} - \frac{x-\frac{1}{2}}{x-\frac{7}{4}} \end{cases}$ OTBET: $x \in \left(\frac{7}{4}; +\infty\right)$ $-\frac{1}{2} \frac{7}{4}$

$$\begin{array}{c}
\begin{pmatrix} \frac{x}{3} \ge 0 \\ 1 - 3x \le 2x - 1 \Rightarrow \begin{cases} x \ge 0 \\ x \ge \frac{2}{5} \\ x > 3 \end{cases} \\
\text{OTBET: } x \in (3; +\infty) \\
\mathbf{B}) \begin{pmatrix} 4x^2 + 1 \le 0 \\ x^2 \ge 0 \end{pmatrix} \begin{pmatrix} x^2 \le \frac{1}{4} \Rightarrow \begin{cases} x_{1,2} = \pm \frac{1}{2} \\ x_{1,3} \ge 0 \end{cases} \\
x \ge \frac{1}{2} & 0 \\
& 1 & 0 \\
& 2 & 1
\end{pmatrix}$$

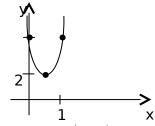

Otbet:
$$x \in \left[-\frac{1}{2}; 0 \right] \cup \left[0; \frac{1}{2} \right]$$

4

a)
$$V = \sqrt{2gh} \Rightarrow V^2 = 2gh \Rightarrow h = \frac{V^2}{2g}$$

Otbet: $\frac{V^2}{2g}$

6)
$$y = -2.5x$$


функция убывающая

B)
$$y = x^2 - 2x + 3$$
,

$$x_0 = \frac{2}{2} = 1$$

$$y_0 = 2$$

$$x = 3 \Rightarrow y = 6$$

Otbet: $y \in [0;6]$

ТЕКУЩИЙ КОНТРОЛЬ

Контрольная работа №1 по теме: «Развитие понятия о числе»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 6 заданий

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные.

Критерии оценивания:

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	1
2	1
3	2
4	2
5	2 + 2
6	1+2+3
итого	16

«5» (отлично)	14 – 16
«4» (хорошо)	11 – 13
«3» (удовлетворительно)	7 - 10
«2» (плохо)	менее 7

1. Найдите значение дроби:

$$8\frac{2}{3}:1\frac{4}{9}-1$$

- 2. Найдите остаток от деления на 11 числа 437.
- 3. Запишите периодическую дробь 0,(87) в виде обыкновенной дроби.
- 4. Найдите НОД и НОК чисел 180 и 540.
- 5. Решите уравнение a) x^2 2x + 2 = 0; б) $x^3 27 = 0$.
- 6. Вычислите a) $(5+i) \cdot (-2+3i)$; б) $\frac{4i}{1+i}$; в) $\left(\frac{-1+i\sqrt{3}}{2}\right)^4$.

Вариант 2

1. Найдите значение дроби:
$$\frac{203,4:9 - (5,39 - 7,39)}{\frac{3}{14}*\frac{7}{9} - \frac{1}{3}}$$

- 2. Найдите остаток от деления на 19 числа 671.
- 3. Запишите периодическую дробь 0,(35) в виде обыкновенной дроби.
- 4. Найдите НОД и НОК чисел 154 и 540.
- 5. Решите уравнение a) $x^2 + 5x + 9 = 0$; б) $x^3 + 8 = 0$.
- 6. Вычислите a) $(7+i) \cdot (3+i)$; б) $\frac{4-3i}{3-i}$; в) $(\sqrt{3}-2i)^6$

Контрольная работа № 2 по теме: "Степени, корни и логарифмы"

Контрольно-измерительные материалы предназначены ДЛЯ текущего контроля ПО общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 4 разно уровневых задания Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные.

Критерии оценивания:

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде.

- «5» выполнение варианта В
- «4» выполнение варианта Б
- «3» выполнение варианта А

Вариант А1

1. Найдите значение выражения:

a)
$$\left(\sqrt[3]{2^2 \cdot \sqrt{2}}\right)^{\frac{6}{5}}$$
; б) $\frac{2x^{\frac{1}{2}}}{x-4} - \frac{1}{x^{\frac{1}{2}}-2}$ при $x = 9$; в) $3\log_2 \frac{1}{8} + 10^{\lg 2 + \lg 5}$.

2. Решите уравнения:

a)
$$\sqrt{x+12} = x$$
; 6) $3^{x+3} - 3^x = 78$; B) $2\log_3 x = \log_3(2x^2 - x)$.

3. Решите систему уравнений:

$$\begin{cases} 3^x + 3^y = 12, \\ x + y = 3. \end{cases}$$

4. Сравните числа:

a)
$$\left(\frac{1}{2}\right)^{\frac{1}{2}}u\left(\frac{1}{2}\right)^{-\frac{1}{2}}$$
; 6) $\sqrt[7]{5^3}u5^{0.4}$; B) $\log_3 10u \lg 3$.

Вариант Б1

1. Найдите значение выражения:

a)
$$\frac{\sqrt[4]{3 \cdot \sqrt[3]{9}}}{\sqrt[6]{9 \cdot \sqrt{3}}}$$
; б) $\left(\frac{x - x^{\frac{2}{3}}}{x^{\frac{1}{3}} - 1} - 2\sqrt[3]{x} + 1\right) \cdot \frac{x^{\frac{1}{3}} + 1}{x^{\frac{1}{3}} - 1}$ при $x = 8$; в) $\log_{0.6}(\log_8 32) + 49^{\log_{\sqrt{7}} \sqrt{2}}$.

2. Решите уравнения:

a)
$$\sqrt{6-4x-x^2}$$
 - $x = 4$; 6) $3^{x-1} + 3^x + 3^{x+1} = 13 \cdot 3^{x^2-7}$; B) $\log_2^2 x^2 + 6\log_{0.25} x - 1 = 0$.

3. Решите систему уравнений:

$$\begin{cases} \log_3(x+y) = 2, \\ 9^{\log_3\sqrt{x-y}} = 5. \end{cases}$$

4. Сравните числа:

a)
$$5^{0.6}u7^{-0.2}$$
 6) $\sqrt{3}u3^{-\frac{1}{2}}$; B) $\log_3 10u \log_8 62$.

Вариант В1

1. Найдите значение выражения:

a)
$$\sqrt[3]{26+15\sqrt{3}}$$
 $(2-\sqrt{3})$; б) $\frac{x^{\frac{5}{3}}-x^{\frac{2}{3}}}{x+x^{\frac{2}{3}}} \cdot \left(\frac{x^{\frac{1}{3}}}{x-1} + \frac{1}{x^{\frac{1}{3}}-1}\right)$ при $x = 125$; в) $3^{\frac{2}{\log_5 3}} + \frac{\log_2 \frac{1}{3}}{\log_4 81}$.

2. Решите уравнения:

a)
$$\sqrt{3+\sqrt{5-x}} = \sqrt{x}$$
; 6) $6^x + 6^{x+1} = 2^x + 2^{x+1} + 2^{x+2}$; B) $\log_3^2(9x) + \log_3^2(3x) = 1$.

3. Решите систему уравнений:

$$\begin{cases} 2^{2 + \log_2(x^2 + y^2)} = 20, \\ \lg(x^2 - y^2) - \lg(x - y) = 0. \end{cases}$$

4. Сравните числа:

а)
$$2^{21}u3^{14}$$
; б) $\sqrt[3]{27^2}u\sqrt{5^3}$; в) $\log_2 0.9$ и 0.1

Вариант А2

1. Найдите значение выражения:

a)
$$\left(\sqrt{3^3 \cdot \sqrt[3]{3}}\right)^{\frac{3}{5}}$$
; 6) $\frac{1}{x^{\frac{1}{3}} - 3} - \frac{6}{x^{\frac{2}{3}} - 9}$ при $x = 8$; в) $2\log_3 \frac{1}{27} + 6^{\log_6 72 - \log_6 2}$.

2. Решите уравнения:

a)
$$\sqrt{7-x} = x-1$$
; 6) $5^{x+2} + 5^x = 130$; B) $2\log_5(-x) = \log_5(x+2)$.

3. Решите систему уравнений: $\begin{cases} 2^{x} + 2^{y} = 10, \\ x + y = 4. \end{cases}$

$$\begin{cases} 2^x + 2^y = 10, \\ x + y = 4. \end{cases}$$

4. Сравните числа:

a)
$$3^{-\frac{1}{3}}u3^{\frac{1}{3}}$$
; 6) $(0.5)^{0.2}u\sqrt[9]{0.25}$; B) $\log_2 7u\log_7 2$.

Вариант Б2

1. Найдите значение выражения:

a)
$$\frac{\sqrt[4]{2 \cdot \sqrt[3]{4}}}{\sqrt[6]{4 \cdot \sqrt{2}}}$$
; б) $\left[1 + 2\sqrt[4]{x} + \frac{x - \sqrt{x}}{\sqrt{x} - 1}\right] \cdot \frac{x^{\frac{1}{4}} - 1}{x^{\frac{1}{4}} + 1}$ при $x = 16$; в) $\log_{1,2}(\log_{64} 32) + 9^{\log_{\sqrt{3}}\sqrt{5}}$.

2. Решите уравнения:

a)
$$\sqrt{2x^2 + 8x + 7} - 2 = x$$
; 6) $2^{x+2} + 2^{x+3} + 2^{x+4} = 7 \cdot 2^{x^2}$; B) $\log_3^2 x^3 - 20 \log_9 x + 1 = 0$.

3. Решите систему уравнений:

$$\begin{cases} \log_2(x - y) = 3, \\ 4^{\log_2\sqrt{x+y}} = 10. \end{cases}$$

4. Сравните числа:

a)
$$6^{0.5}u11^{-0.4}$$
 б) $\sqrt{7}u7^{-\frac{1}{3}}$; в) $\log_2 9u \lg 900$.

Вариант В2

1. Найдите значение выражения:

a)
$$\sqrt[3]{7-5\sqrt{2}}$$
 $(1+\sqrt{2})$; б) $\left(\frac{x^{\frac{1}{3}}}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1} - \frac{3x^{\frac{1}{3}}-1}{x+1}\right) \div \frac{x^{\frac{2}{3}}-x^{\frac{1}{3}}}{x^{\frac{4}{3}}+x^{\frac{1}{3}}}$ при $x = 64$; в) $5^{\frac{1}{\log_{0.5}5}} + \frac{\log_3 \frac{1}{2}}{\log_9 16}$.

2. Решите уравнения:

a)
$$\sqrt{1+\sqrt{3x+1}} = \sqrt{x}$$
; 6) $3^{x-1} + 3^x + 3^{x+1} = 12^{x-1} + 12^x$; B) $\log_2^2(4x) + \log_2^2(2x) = 1$.

3. Решите систему уравнений:

$$\begin{cases} 3^{1+\log_3(x^2-y^2)} = 15, \\ loo_2(x^2-y^2) - loo_2(x+y) = 0. \end{cases}$$

4. Сравните числа:

а)
$$5^{42}u7^{39}$$
; б) $\sqrt[3]{84}u\sqrt[6]{25^3}$; в) $\log_{\frac{1}{2}}\frac{3}{2}$ и 0,5

Контрольная работа № 3 по теме: "Параллельность в пространстве"

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 3 задания

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. *Критерии оценивания:*

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	2
2	6
3	4+4
итого	16

«5» (отлично)	14 – 16
«4» (хорошо)	10 - 13
«3» (удовлетворительно)	6-9
«2» (плохо)	менее 6

- 1. Точки М и N расположены на рёбрах тетраэдра. Скопируйте рисунок, отметьте и обозначьте точки в которых прямая MN пересекает прямые, содержащие другие рёбра тетраэдра.
- 2. Отрезок AB имеет с плоскостью α единственную точку A. Точка C делит AB в отношении 5 : 4, считая от точки A. Через C и B проведены параллельные прямые, пересекающие плоскость α соответственно в точках C_1 и B_1 . Найдите AC_1 , если $AB_1 = 18$ см.
- 3. Равные прямоугольники ABCD и ABMК лежат в разных плоскостях.
 - 1) Найдите длину ломаной ACBKA, если CD = 8 см, BM = 6 см.
 - 2) Верно ли утверждение: прямые АС и ВК параллельны?

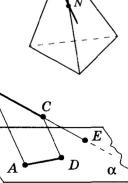
Вариант 2

- 1. Продолжение отрезка BC, изображенного на рисунке, пересекает плоскость α в точке E. отрезок AD лежит в плоскости α. Скопируйте рисунок и изобразите отрезки AC и BD. Определите, пересекаются ли эти отрезки.
- 2. Точка C лежит на отрезке AB. Через точку A проведена плоскость, а через точки B и C параллельные прямые, пересекающие эту плоскость соответственно в точках B_1 и C_1 . Найдите AC_1 , если BB_1 : CC_1 = 3 : 2 и AB_1 = 9 см.
- 3. Прямая c является линией пересечения плоскостей α и β . В плоскость α проведена прямая a, пересекающая c. В плоскости β взята точка a, не лежащая на прямой a.
 - 1) Постройте линию пересечения плоскости β с плоскостью, в которой лежат прямая a и точка B

2) Найдите общую точку плоскостей α , β и плоскости, в которой лежат прямая a и точка B.

Контрольная работа № 4 по теме: "Перпендикулярность в пространстве"

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.


Количество вариантов для студентов: 2 варианта, в каждом 3 задания

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. **Критерии оценивания:**

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное
	задание
1	4

2	2
3	4 + 6
итого	16

«5» (отлично)	14 – 16
«4» (хорошо)	10 – 13
«3» (удовлетворительно)	6 – 9
«2» (плохо)	менее 6

- **1.** Сторона квадрата равна 4 см. Точка, равноудаленная от всех вершин квадрата, находится на расстоянии 6 см от точки пересечения его диагоналей. Найдите расстояния от этой точки до вершин квадрата.
- **2.** Через точку, удаленную от плоскости на расстояние 5см, проведены к этой плоскости две наклонные по 13см каждая. Угол между проекциями этих наклонных равен 60°. Найдите расстояние между основаниями наклонных.
- 3. Диагональ куба равна 6см. Найдите:
 - а) Ребро куба.
 - б) Косинус угла между диагональю куба и плоскостью одной из его граней.

Вариант 2

- 1. Из центра О правильного треугольника ABC проведен перпендикуляр ON к плоскости ABC длиной 2 см. Вычислите расстояние от точки M до стороны треугольника ABC, если AB = 4см.
- **2.** Через точку, удаленную от плоскости на расстояние 4см, проведены к этой плоскости две наклонные по 5см каждая. Угол между проекциями этих наклонных равен 90°. Найдите расстояние между основаниями наклонных.
- **3.** Основанием прямоугольного параллелепипеда служит квадрат, диагональ параллелепипеда равна $2\sqrt{6}$ см, а его измерения относятся как 1:1:2. Найдите:
 - а) Измерения параллелепипеда.
 - б) Синус угла между диагональю параллелепипеда и плоскостью его основания.

Контрольная работа №5 по теме: «Координаты и векторы в пространстве»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 3 задания

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные.

Критерии оценивания:

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде.

№ задания	максимальное количество баллов за правильно выполненное
	задание
1	3+2+2+1
2	1+2+1+1
3	2 + 2
ИТОГО	17

«5» (отлично)	15 – 17
«4» (хорошо)	12 – 14

«3» (удовлетворительно)	8 – 11
«2» (плохо)	менее 8

1. Даны A(2;-3;1), B(6;1;-1), C(4;8;-9).
 Найдите:1) а)
$$\overrightarrow{AB} + \overrightarrow{BC}$$
; б) $\overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$; в) $3\overrightarrow{CA} + 4\overrightarrow{AB} - \frac{4}{3} \overrightarrow{BC}$

- 2) периметр треугольника АВС
- 3) координаты медиан $\overrightarrow{AE}, \overrightarrow{BD}, \overrightarrow{CM}$ треугольника ABC;
- 4) Угол между $\overrightarrow{AB}_{\mathsf{H}} \overrightarrow{AC}$.
- **2.** ABCDA₁B₁C₁D₁-прямоугольный параллелепипед, A(2;0;0), B(0;0;0), C(0;4;0), B1 (0,0,3)
- 1) Постройте этот параллелепипед на координатной плоскости Охуд
- 2) Найдите координаты точек C_1, D_1, D, A_1 ;
- 3) Угол между $\overrightarrow{A_1C}$ и \overrightarrow{AC} :
- 4) $\overrightarrow{AD} \cdot \overrightarrow{CD}$
- **3.** 1) $ABCDA_1B_1C_1D_1$ параллелепипед. Укажите вектор, сумме равный $\overrightarrow{AB} + \overrightarrow{B_1C_1} + \overrightarrow{DD_1} + \overrightarrow{CD}$
 - 2) Докажите, что векторы $\overrightarrow{AC_1}$ \overrightarrow{AC} + $\overrightarrow{C_1A_1}$ и $\overrightarrow{A_1A}$ \overrightarrow{CB} + \overrightarrow{AB} противоположны.

Вариант 2

1. Даны A(5;-1;-4), B(9;3;-6), C(7;10;-14).

Найдите:1) а)
$$\overrightarrow{AB} + \overrightarrow{BC}$$
; б) $\overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$; в) $3\overrightarrow{CA} + 4\overrightarrow{AB} - \frac{4}{3} \overrightarrow{BC}$

- 2)периметр треугольника АВС
- 3)координаты медиан $\overrightarrow{AE}, \overrightarrow{BD}, \overrightarrow{CM}$ треугольника ABC;
- 4) Угол между \overrightarrow{AB} и \overrightarrow{AC} .
- **2.** ABCDA₁B₁C₁D₁-прямоугольный параллелепипед, A(1;0;0), B(0;0;0), C(0;2;0), B₁(0;0;3).
- 1) Постройте этот параллелепипед на координатной плоскости O_{xvz}
- 2) Найдите координаты точек C_1, D_1, D, A_1 ;
- 3) Угол между A_1C и \overrightarrow{AC} :
- 4) $\overrightarrow{AD} \cdot \overrightarrow{CD}$.
- 3. 1) $A \to BCDA_1B_1C_1D_1$ параллелепипед. Укажите вектор, равный сумме
 - 2) Докажите, что векторы \overrightarrow{DE} + \overrightarrow{DF} \overrightarrow{KF} и \overrightarrow{MC} \overrightarrow{MK} \overrightarrow{EC} противоположны.

Контрольная работа №6 по теме: «Тригонометрия»

Контрольно-измерительные материалы предназначены ДЛЯ текущего контроля общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 5 заданий

Время выполнения задания: 90 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. Критерии оценивания:

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	2+2
2	2+2
3	1+1+1
4	2
5	2+3
итого	18

«5» (отлично)	16 – 18
«4» (хорошо)	13 – 15
«3» (удовлетворительно)	9 – 12
«2» (плохо)	менее 9

Контрольная работа №6 Вариант 1

- 1. Упростите выражение: a) $3\cos t 2\sin(270^{\circ}-t) + \cos(90^{\circ}+t) \cos(360^{\circ}+t)$;
- $δ) \frac{\sin \alpha \cdot \cos \alpha}{\cos^2 \alpha \sin^2 \alpha}$
- 2. Решите уравнение:
 - a) $2\sin(x/3)=1$; 6) $3\sin^2 x 10\sin x + 3=0$;
- 3. Вычислите:

a)
$$\cos^2 \frac{\pi}{8} - \sin^2 \frac{\pi}{8}$$
; 6)

$$\sin \frac{\pi}{7} \cdot \cos \frac{4\pi}{21} + \cos \frac{\pi}{7} \cdot \sin \frac{4\pi}{21}$$
;

- **B)** $\cos 105^{\circ} \cos 75^{\circ}$
- 4. Найдите $\sin(\alpha + \beta)$, если известно, что $\cos \alpha = \frac{4}{5}, \sin \beta = -\frac{5}{13}, \alpha, \beta \in IV$ четверти
- 5. Решите неравенство: a) $cosx \ge -\frac{\sqrt{2}}{2}$; б) tgx < 1

Контрольная работа №6 Вариант 2

1. Упростите выражение:

a)
$$\frac{2\sin^2(4\pi + t) - 1}{\cos(\frac{3\pi}{2} + t) + \sin(\frac{\pi}{2} + t)}$$
; 6) $\frac{2\sin^2\alpha - 1}{1 - 2\cos^2\alpha}$

2. Решите уравнение:

a)
$$ctg\left(x + \frac{\pi}{4}\right) = -\sqrt{3}$$
; 6) $2\sin^2 x + 2\cos x - 2.5 = 0$

3. Вычислите:

a)
$$\cos 17^{\circ} \cdot \cos 3^{\circ}$$
; б) $\cos \frac{7\pi}{12} - \sin \frac{3\pi}{12}$; в)
$$\frac{1 - tg27^{\circ} \cdot tg33^{\circ}}{tg27^{\circ} + tg33^{\circ}}$$

4. Найдите $\sin(\alpha - \beta)$, если известно, что $\cos \alpha = \frac{4}{5}, \sin \beta = -\frac{5}{13}, \alpha, \beta \in IV$ четверти

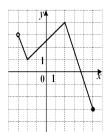
5. Решите неравенство: a) $cosx \le -\frac{\sqrt{2}}{2}$; б) tgx > 1

Контрольная работа №7 по теме: «Функции, их графики и свойства»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 6 заданий **Время выполнения задания:** 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. Критерии оценивания:


При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	3
2	1+2
3	4
4	2+2
5	2 + 2
6	3
ИТОГО	21

«5» (отлично)	19 – 21
«4» (хорошо)	14 - 18
«3» (удовлетворительно)	9 – 13
«2» (плохо)	менее 9

Вариант - 1

1. На рисунке изображен график функции y = f(x).

Укажите:

- а) Область определения функции; б) Множество значений; в) Нули функции; г) Промежутки знакопостоянства; д) Промежутки монотонности; е) Точки экстремума и экстремумы функции; ж) Наибольшее и наименьшее значение функции, если они существуют.
- 2. Найти область определения функции:

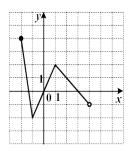
a)
$$y = \log_3(x^2 + x - 6)$$
; 6) $y = \sqrt{x} + \frac{1}{x - 2}$.

3. Постройте и прочитайте график функции

$$y = \begin{cases} \left(\frac{1}{3}\right)^x, ecnu & x < 0, \\ cos 2x, ecnu & x \ge 0 \end{cases}$$

4. Решите уравнения графическим методом:

a)
$$3^{1-x} = 2x - 1$$
, 6) $\sin \frac{x}{2} = \frac{1}{2}$


5. Решите графически неравенство:

a)
$$\cos(x - \frac{\pi}{4}) > 1/2$$
, $0 \le x \le 7\pi/2$, 6) $\log_3(x - 1) \le 2$.

6. Изобразите схематически график функции и найдите её область определения и множество значений $y = x^{\pi} + 1$

Вариант – 2

1. На рисунке изображен график функции y = f(x).

Укажите:

- а) Область определения функции; б) Множество значений; в) Нули функции; г) Промежутки знакопостоянства; д) Промежутки монотонности; е) Точки экстремума и экстремумы функции; ж) Наибольшее и наименьшее значение функции, если они существуют.
- 2. Найти область определения функции:

a)
$$y = log_{0.3}(6 + x - x^2)$$
; 6) $y = \sqrt{x+2} + \frac{1}{x}$.

3. Постройте и прочитайте график функции $y = \begin{cases} 5^x, ecnu & x \ge 0, \\ cos \frac{x}{2}, ecnu & x \le 0 \end{cases}$

$$y = \begin{cases} 5^x, ecnu & x \ge 0, \\ cos \frac{x}{2}, ecnu & x \le 0 \end{cases}$$

- 4. Решите уравнение графическим методом
- a) lg x = 1 x; 6) tg2x = 1.
- 5. Решите графически неравенство:

a)
$$\sin (x + \frac{\pi}{3}) < 0.5$$
, $-\frac{5\pi}{2} \le x \le \frac{\pi}{2}$; 6) $(\frac{1}{3})^x \le 2x + 5$.

6. Изобразите схематически график функции и найдите её область определения и множество $y = (x+1)^{-\sqrt{2}}$ значений

Контрольная работа № 8 по теме: «Многогранники и круглые тела»

Контрольно-измерительные материалы предназначены ДЛЯ текушего общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 8 заданий

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. Критерии оценивания:

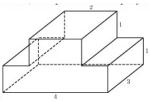
При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	2
2	2
3	1
4	2
5	1
6	2
7	2
8	3
ИТОГО	15

«5» (отлично)	14 – 15
«4» (хорошо)	11 – 13
«3» (удовлетворительно)	7 – 10
«2» (плохо)	менее 7

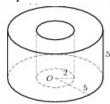
1. В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй сосуд, диаметр которого в 2 раза больше первого?

2. Найдите объём части цилиндра, изображённого на рисунке.


- 3. Во сколько раз уменьшится объём конуса, если его высоту уменьшить в 3 раза?
- 4. Найдите объём части конуса, изображенного на рисунке.

- **5.** Объём одного шара в 27 раз больше объёма второго. во сколько раз площадь поверхности первого шара больше площади поверхности второго?
- **6.** Цилиндр и конус имеют общее основание и общую высоту. Вычислите объём цилиндра, если объём конуса равен 25.

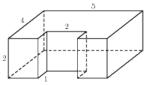
7. Найдите объём многогранника, изображённого на рисунке (все углы многогранника прямые)


8. Сторона основания правильной шестиугольной пирамиды равна 2, боковое ребро равно 4. Найдите площадь поверхности и объём пирамиды.

Вариант 2

1. В цилиндрический сосуд, в котором находится 6 литров воды, опущена деталь. При этом уровень жидкости в сосуде поднялся в 1,5 раза. Чему равен объём детали ?

2. Найдите объём части цилиндра, изображённого на рисунке.


- 3. Высота конуса равна 6, образующая равна 10. Найдите его объём.
- **4.** Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90°. Вычислите площадь поверхности и объём конуса.
- 5. Во сколько раз увеличится объём шара, если его радиус увеличить в три раза?
- 6. В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8.

5

Боковые ребра равны π . Найдите объём цилиндра, описанного около этой призмы.

7. Найдите объём многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

8. Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен 45° . Найдите площадь поверхности и объём пирамиды.

Контрольная работа №9 по теме: «Производная и её применение»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 4 задания

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, справочные данные.

Критерии оценивания:

При оценке промежуточной контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	2 + 2
2	2
3	4
4	2
ИТОГО	12

«5» (отлично)	11 – 12
«4» (хорошо)	9 – 10
«3» (удовлетворительно)	6 – 8

«2» (плохо) менее 6

Вариант 1

- 1. Найдите производную функции: a) $y = (x - 1)(x^2 + x + 1)$; б) $y = \frac{x - 1}{x + 3}$.
- 2. Составьте уравнение касательной к графику функции: $y = \frac{x^3}{3} x^2 + 2x 7$ в точке a = -3.
- 3. Исследуйте функцию и построите её график: $y = \frac{x-2}{2+x}$
- **4.** Найдите наибольшее и наименьшее значения функции $y = x + \frac{4}{x+1}$ на отрезке [- 2; 0].

Вариант 2

- 1. Найдите производную функции: a) $y = (x + 7)(x^2 + 5x + 3)$; б) $y = \frac{2x - 4}{x + 3}$.
- 2. Составьте уравнение касательной к графику функции: $y = 7 2x^2$ в точке a = 3.
- 3. Исследуйте функцию и построите её график: $y = \frac{4 x}{x + 8}$
- 4. Найдите наибольшее и наименьшее значения функции $y = 2x + \frac{4}{x-1}$ на отрезке [- 2; 0].

Контрольная работа №10 по теме: «Интеграл и его применение»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 5 заданий **Время выполнения задания:** 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. Критерии оценивания:

При оценке текущей контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	1+1
2	2
3	2+3
4	3
5	4
ИТОГО	16

«5» (отлично)	14 – 16
«4» (хорошо)	11 – 13
«3» (удовлетворительно)	7 – 10
«2» (плохо)	менее 7

Вариант 1

- **1.** Проверить, является ли функция y = F(x) первообразной для функции y = f(x), если: a) $F(x) = x^4 3\sin x$, $f(x) = 4x^3 3\cos x$;
 - 6) $F(x) = 3\cos(5x 7)$, $f(x) = -15\sin(5x 7)$

Вариант 2

- **1.** Проверить, является ли функция y = F(x) первообразной для функции y = f(x), если:
 - a) $F(x) = 2x^5 3\cos x$, $f(x) = 10x^4 + 3\sin x$;

2. Найдите неопределённый интеграл: $\int \left(\frac{4}{x^2} + 3\sin x\right) dx$

3. Вычислите определённый интеграл:

a)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$
; 6) $\int_{0}^{\frac{\pi}{4}} \cos 2x \, dx$

4. Вычислите площадь фигуры ограниченной

$$y = x^3 + 2$$
, $y=0$, $x=0$, $x=2$

$$y = \frac{\sqrt{3}}{\cos^{2}x} + \sin 3x + \frac{1}{\pi}$$

5. Дана функция

график Известно, что некоторой первообразной проходит через точку 1). Чему равно значение этой первообразной

6)
$$F(x) = 2\sin(3x - 4)$$
, $f(x) = 6\cos(3x - 4)$

2. Найдите неопределённый интеграл: $\int (x^8 + 3\cos x)dx$

3. Вычислите определённый интеграл:
$$a)^{\int_{3}^{4} \frac{1}{x^{2}} dx} \int_{5}^{\frac{\pi}{4}} \frac{1}{6} \cos 2x \, dx$$

4. Вычислите фигуры ограниченной линиями:

$$y = -x^2 + 4x$$
, $y = 0$
5. Дана функция $y = \frac{3}{\sin^{-2}x} + \cos 3x + \frac{3}{\pi}$

Известно, что график некоторой первообразной проходит через точку (4 ; 2). Чему равно значение этой

первообразной в точке $X = \frac{\pi}{3}$?

Контрольная работа №11 по теме: «Элементы теории вероятности и математической статистики»

предназначены Контрольно-измерительные материалы ДЛЯ текущего общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 5 заданий

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные. Критерии оценивания:

При оценке текущей контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	4
2	1
3	2
4	2
5	2
ИТОГО	11

«5» (отлично)	10 – 11
«4» (хорошо)	8 – 9
«3» (удовлетворительно)	5 – 7
«2» (плохо)	менее 5

- 1. Приведен рост (в см) десяти человек: 163, 183, 172, 180, 172, 181, 174, 165, 173, 179. Составьте таблицу распределения данных; постройте многоугольник и гистограмму распределения данных; составьте паспорт данных.
- 2. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
- 3. В урне находится 15 красных и 9 синих шаров, вынимают наудачу 4 шара. Какова вероятность того, что все шары синие?
- 4. В партии из 28 деталей 22 качественные. Наугад выбирают 7 деталей. Найти вероятность того, что из этих 7 деталей две окажутся бракованными.
- 5. Вероятность попадания в цель при одном выстреле составляет 0,7. Найдите вероятность пяти попаданий при восьми выстрелах.

- 1. Приведен рост (в см) десяти человек: 187, 162, 171, 162, 183, 165, 174, 179, 185, 173. Составьте таблицу распределения данных; постройте многоугольник и гистограмму распределения данных; составьте паспорт данных.
- 2. В урне 20 белых и 25 черных шаров. Из урны вынимают наугад один шар. Найдите вероятность того, что этот шар белый.
- 3. К концу дня в палатке осталось 70 арбузов, из которых 55 спелых. Покупатель выбирает 3 арбуза. Какова вероятность того, что все арбузы спелые?
- 4. Имеется шесть билетов в театр, три из которых на места первого ряда. Какова вероятность того, что из трех наудачу выбранных билетов два окажутся на места первого ряда?
- 5. Монету подбрасывают 10 раз. Какова вероятность того, что при этом «герб» выпадет три раза?

Контрольная работа № 12 по теме: «Уравнения и неравенства»

Контрольно-измерительные материалы предназначены для текущего контроля по общеобразовательному предмету «Математика» для подготовки специалистов среднего звена по специальность 11.02.17 Разработка электронных устройств и систем.

Количество вариантов для студентов: 2 варианта, в каждом 4 задания

Время выполнения задания: 45 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, калькулятор, справочные данные.

Критерии оценивания:

При оценке текущей контрольной работы используется пятибалльная система. Оценивание выполнения всех работ осуществляется в соответствии со следующими рекомендациями: задание считается выполненным верно, если обучающийся выбрал правильный путь решения, из письменной записи решения понятен ход его рассуждений, получен верный ответ, который записан в стандартном виде и имеется размерность величины.

№ задания	максимальное количество баллов за правильно выполненное задание
1	2 + 2 + 2
2	2 + 2 + 2
3	4
4	2
ИТОГО	20

«5» (отлично)	18 – 20
«4» (хорошо)	14 - 17
«3» (удовлетворительно)	10 - 13
«2» (плохо)	менее 10

Вариант 1

1. Решите уравнение:

a)
$$10^{\log_2(x-3)} \cdot 0.00001 = 0.1^{\log_2(x-7)};$$
 6) $x^4 + x^3 - 4x^2 - 4x = 0;$
B) $\sqrt{x^2 + x + 4} + \sqrt{x^2 + x + 1} = \sqrt{2x^2 + 2x + 9}.$

B)
$$\sqrt{x^2 + x + 4} + \sqrt{x^2 + x + 1} = \sqrt{2x^2 + 2x + 9}$$

2. Решите неравенство:

a)
$$\frac{1}{x-1} - \frac{3}{x} + \frac{1}{x+1} > 0;$$

 $\begin{cases} (x+1)^2 - (x-1)^2 \ge 12, \\ (x+4)(x-4) - (x+2)^2 < 9. \end{cases}$

3. Решите систему уравнений:

$$\begin{cases} x^3 - y^3 = 218, \\ x^2 + xy + y^2 = 109. \end{cases}$$

4. Среднее арифметическое двух чисел равно 20, а их среднее геометрическое равно 12. Найдите эти числа.

Вариант 2

1. Решите уравнение:

a)
$$(\log_{0.1}^2 x - 2)^3 = (2\log_{0.1} x + 1)^3$$
; 6) $x^3 + 2x^2 - x - 2 = 0$;
B) $x^2 + \frac{3}{x^2} - 4 = 0$.

2. Решите неравенство:

a)
$$\frac{1}{2-x} + \frac{5}{2+x}$$
 (1; 6) $\lg(2x-51) - \lg(22-x) \ge 2$;

3. Решите систему уравнений: $\begin{cases} 3x = y + 1, \\ 7^{y-2x+2} = 7^{y-4x+1} + 6. \end{cases}$

4. Длина гипотенузы прямоугольного треугольника равна 37 см, а его площадь – 210 см². Найдите длины катетов.

промежуточный контроль

Проводится в форме экзамена. В экзаменационной работе представлены задания базового и повышенного уровней сложности. К заданиям базового уровня относится 10 заданий с кратким ответом. Эти задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. К заданиям повышенного уровня относится 2 задания. Эти задания направлены на проверку освоения математики на профильном уровне.

Время выполнения экзаменационного задания: 255 минут.

Оборудование: бумага, ручка, линейка, карандаш, ластик, справочные данные.

Критерии оценки:

Каждое из заданий 1–10 с кратким ответом считается выполненным, если записанный ответ совпадает с верным ответом. Задания 11 и 12 оцениваются 2 баллами, если верно выполнены оба пункта задания, 1 баллом, если верно выполнен один пункт задания, и 0 баллов в других случаях.

Задание с развернутым ответом оценивается экспертом с учетом правильности и полноты ответа. Максимальный первичный балл за задание с развернутым ответом – 2. К заданию приводится подробная инструкция для экспертов, в которой указывается, за что выставляется каждый балл – от нуля до максимального балла. В экзаменационном варианте перед каждым типом задания предлагается инструкция, в которой приведены общие требования к оформлению ответов.

Максимальный балл за всю работу – 14.

Шкала пересчета первичного балла за выполнение экзаменационной работы в отметку по пятибалльной шкале

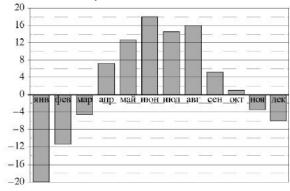
Отметка	«2»	«3»	«4»		«5»	
по пятибалльной шкале			(при	условии	(при	условии
			выполнения	11 или 12	выполнения	11 или 12

			задания)	задания)
Общий балл	0–4	5–7	8–11	12–14

Инструкция: Экзаменационная работа состоит из 12 заданий, из которых 9 заданий базового уровня сложности с кратким ответом, 1 задание повышенного уровня сложности с кратким ответом и 2 задания повышенного уровня сложности с развёрнутым ответом.

На выполнение экзаменационной работы по математике отводится 235 минут.

Ответы к заданиям 1–10 записываются в виде целого числа или конечной десятичной дроби.

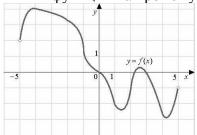

При выполнении заданий 11 и 12 требуется записать полное решение и ответ. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. Желаем успеха!

Вариант 1

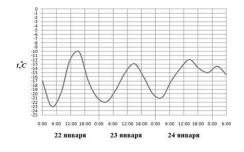
- 1. Для ремонта подоконников в школе используется шпатлёвка. Сколько банок шпатлёвки необходимо закупить, если одной банки хватает на три подоконника, а всего в школе 49 подоконников требующих ремонта?
- 2. Розы продаются по 150 рублей за штуку. Какое наибольшее количество роз можно купить на 1000 рублей во время распродажи, когда предоставляется скидка 10%?
- 3. Найдите корень уравнения: $log_2(4-x) = 7$
- 4. В соревнованиях по метанию копья принимает участие 7 спортсменов из России, 5 из Германии, 4 из Польши и 9 из Австралии. Порядок выступления определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, будет представлять Россию.
- 5. На диаграмме показана среднемесячная температура воздуха (в градусах Цельсия) в Череповце в течение 2001 года. Определите наименьшую среднемесячную температуру во второй половине этого года?


6. Каждому из четырёх неравенств в левом столбце соответствует одно из решений из правого столбца. Установите соответствие между неравенствами и множествами их решений.

НЕРАВЕНСТВА РЕШЕНИЯ 1) $3^{x} \ge 3$ 1) $\frac{1}{1}$ x2) $\frac{\left(\frac{1}{3}\right)^{x}}{1} \ge 3$ 2) $\frac{1}{1}$ x3) $\frac{\left(\frac{1}{3}\right)^{x}}{1} \le 3$ 3) $\frac{1}{1}$ x4) $3^{x} \le 3$ 4) $\frac{1}{1}$

7. В треугольнике ABC известно, что AB = BC = 17, AC = 16. Найдите длину медианы BM.

- 8. Палисад имеет форму прямоугольника, стороны которого равны 2,5 м и 7 м. Длинной стороной палисад примыкает к дому. Найдите длину забора (в метрах), которым необходимо огородить оставшуюся часть палисада.
- 9. На рисунке показан график функции y = f(x). Определите число экстремумов этой функции на промежутке (-5;5).


10. Бригада асфальтоукладчиков должна уложить 600 кв. метров асфальта. Если они будут укладывать на 50 кв. метров в день больше, чем запланировано, то закончат работу на 2 дня раньше. Сколько кв. метров асфальта в день должна укладывать бригада по плану?

 $\cos\left(x - \frac{5\pi}{2}\right) = 4\sin^3 x$ 11. a) Решите уравнение:

- б) Укажите все его корни, принадлежащие промежутку $\left[\frac{3\pi}{2}; \frac{5\pi}{2}\right]$. 12. В основании правили ной троите.
- 12. В основании правильной треугольной призмы $ABCA_1B_1C_1$ лежит треугольник со стороной 6. Высота призмы равна 4. Точка N середина ребра A_1C_1 .
- а) Постройте сечение призмы плоскостью ВАN.
- б) Найдите периметр этого сечения.

Вариант 2

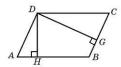
- 1. Школа организует экскурсию для учащихся и сотрудников. Сколько экскурсионных автобусов, вместимостью 25 мест каждый, необходимо заказать, если желание поехать на экскурсию изъявили 128 учащихся и 14 сотрудников школы?
- 2. Налог на доходы в России составляет 13%. Определите зарплату врача до уплаты налога на доходы, если после его уплаты он получает на руки 21750 рублей.
- 3. Найдите корень уравнения: $\left(\frac{1}{3}\right)^{x-18} = \frac{1}{27}$.
- 4. На птицеферме есть куры и гуси, причем кур в 9 раз больше, чем гусей. Найдите вероятность того, что случайно выбранная на ферме птица окажется гусем.
- 5. На графике показаны колебания температуры воздуха (в градусах Цельсия) в течение трёх суток. Определите, на сколько градусов Цельсия наибольшая температура 23 января превосходила наименьшую температуру в этот же день.

6. Каждому из четырёх чисел в левом столбце соответствует отрезок, которому оно принадлежит. Установите соответствие между числами и отрезками из правого столбца.

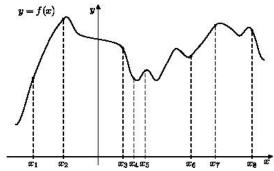
ЧИСЛА

ОТРЕЗКИ

A)
$$log_5 7$$


1) [0;1]

2) [1;2]


B)
$$\sqrt{0.5}$$

3) [2;3]

- 4) [4;5]
- 7. Стороны параллелограмма равны 45 и 54. Высота, проведенная к большей стороне, равна 20. Найдите высоту, проведенную к меньшей стороне параллелограмма.

- 8. Участок земли под застройку имеет форму прямоугольника со сторонами 35 и 50 м. Определите длину ограждения (в метрах), которым будет обнесён по периметру этот участок, если в ограждении нужно предусмотреть ворота шириной 4 м.
- 9. На рисунке показан график дифференцируемой функции y = f(x) и отмечены восемь точек на оси абсцисс: $x_1, x_2, ..., x_8$. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответ запишите количество найденных точек.

- 10. Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?
- 11. а) Решите уравнение: $\cos 2x + 1 = \sin \left(\frac{\pi}{2} x\right)$.
 - б) Укажите все его корни, принадлежащие промежутку $\left[\frac{5\pi}{2}; 4\pi\right]$

12. В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания AB равна 3, а боковое ребро AA_1 равно $\sqrt{6}$. На рёбрах AB, A_1D_1 и C_1D_1 отмечены точки M,

N и K соответственно, причём $AM = A_1N = C_1K = 1$.

- а) Пусть L точка пересечения плоскости $M\!N\!K$ с ребром BC. Докажите, что $M\!N\!K\!L$ квадрат.
- б) Найдите площадь сечения призмы плоскостью MNK.