МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УДМУРТСКОЙ РЕСПУБЛИКИ

Автономное профессиональное образовательное учреждение Удмуртской Республики «Техникум радиоэлектроники и информационных технологий имени А.В. Воскресенского

Практические работы по дисциплине ОП.03 «Основы электротехники» специальность 11.02.17 Разработка электронных устройств и систем

Разработал	Т.Н. Корнева
преподаватель:	

Ижевск, 2023

«Расчет параметров батареи конденсаторов»

Цель работы: Научиться производить расчет параметров батареи конденсаторов

Задание:

Вычертить схему (см. рисунок) с учетом данных для своего варианта (см. таблицу). Определить эквивалентные емкость C, заряд Q батареи конденсаторов и энергию W, накопленную батареей конденсаторов.

Вычислить напряжение и заряд на каждом конденсаторе.

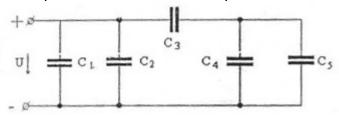
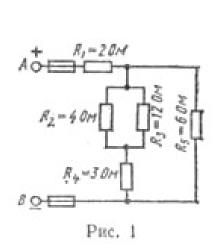


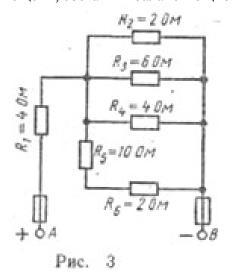
Рисунок 1 – Схема батареи конденсаторов

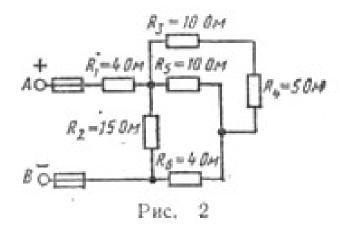
Таблица 1 – Данные к схеме по вариантам

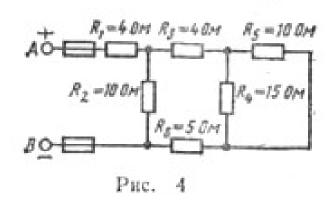
1 40317140	, , , , , ,		AOMO 110	Baprian		
DODINGUE	U,	C ₁ ,	C ₂ ,	C ₃ ,	C ₄ ,	C ₅ ,
вариант	В	мкФ	мкФ	мкФ	мкФ	мкФ
1	150	10	20	30	60	-
2	60	20	-	90	15	30
3	150	15	15	30	20	40
4	60	-	20	90	40	5
5	150	20	10	30	-	60
6	60	10	10	90	45	-
7	150	30	-	30	10	50
8	60	-	20	90	25	20
9	150	-	30	30	30	30
10	60	15	5	90	-	45

Методические указания: Эквивалентную емкость, заряд и энергию рассчитать методом последовательных преобразований в соответствии с таблицей


Таблица 2 – Особенности соединения конденсаторов


Вид соединения	последовательное	параллельное
Схема соединения	C1 C2	C1
Эквивалентна я емкость	$C_{_{9KB}} = \frac{C_1 * C_2}{C_1 + C_2}$	$C_{_{\mathfrak{I}KB}}=C_{1}+C_{2}$
Напряжение	$U_{ m o 6 m} = U_1 + U_2$ $U_1 = rac{Q_1}{C_1}; \ U_2 = rac{Q_2}{C_2}$	$U_{ m o 6 m} = U_1 = U_2$ $U_1 = rac{Q_1}{C_1}; \ U_2 = rac{Q_2}{C_2}$
Заряд	$Q_{\scriptscriptstyle ЭKB} = Q_1 = Q_2 = C_{\scriptscriptstyle ЭKB} * U_{общ}$	$Q_{\scriptscriptstyle ЭKB} = Q_1 + Q_2 = C_{\scriptscriptstyle ЭKB} * U_{общ}$


Энергия	$W_{_{\mathfrak{SKB}}} = \frac{C_{_{\mathfrak{SKB}}} * U_{_{O\mathfrak{G}\mathfrak{U}}}^{2}}{2}$
Энергия	$W = \frac{332}{2}$


ПРАКТИЧЕСКАЯ РАБОТА №2 Тема: Расчет простых цепей

Задача 1. Цепь постоянного тока содержит несколько резисторов, соединенных смешанно. Схема цепи с указанием сопротивлений резисторов приведена на соответствующем рисунке. Номер рисунка, заданные значения одного из напряжений или токов приведены в табл. 1. Определить токи и падение напряжения на каждом участке цепи, составить баланс мощностей.

Номер	Номер	Задаваемая
варианта	рисунка	величина
01	1	$U_{AB} = 100 B$
02	1	$I_1 = 20 \text{ A}$
03	1	$U_2 = 30 B$
04	1	$I_5 = 10 \text{ A}$
05	1	$U_1 = 20 B$
06	2	$U_{AB} = 50 B$
07	2	$I_2 = 2 A$
08	2	$I_1 = 5 A$
09	2	$U_5 = 18 B$
10	2	$U_4 = 10 \text{ B}$
11	3	$U_{AB} = 120 \text{ B}$
12	3	$U_3 = 24 \text{ B}$
13	3	$I_6 = 4 A$
14	3	$I_1 = 24 A$
15	3	$I_4 = 3 A$
16	4	$I_2 = 15 \text{ A}$
17	4	$U_2 = 120 B$
18	4	$U_{AB} = 250 \text{ B}$
19	4	$I_6 = 8 A$
20	4	$I_3 = 2,4 A$
21	5	$U_4 = 12 B$
22	5	$I_3 = 6 A$
23	5	$U_{AB} = 60 B$
24	5	$I_1 = 24 A$
25	5	$I_2 = 4 A$
26	1	$I_3 = 1 A$

ПРАКТИЧЕСКАЯ РАБОТА №3 «Расчет электрических цепей с применением законов Ома и Кирхгофа»

Задание: Для схемы согласно варианта рассчитать токи в ветвях с применением законов Кирхгофа. Составить баланс мощностей и для любого замкнутого контура построить потенциальную диаграмму.

$N_{\underline{0}}$		
·	схема	дано
варианта	one in	Auno

1; 14	$\begin{bmatrix} a \\ R_1 \\ d \end{bmatrix}$ $\begin{bmatrix} B_2 \\ E_2 \\ \end{bmatrix}$ $\begin{bmatrix} C \\ R_3 \\ E_3 \\ \end{bmatrix}$	$E_2 = 2 B,$ $E_3 = 6 B;$ $R_1 = 2 OM,$ $R_2 = 7 OM,$ $R_3 = 4 OM.$
2; 15	R_1 E_1 E_1 E_3 E_4 E_3	$E_1 = 24 \text{ B}, E_3 = 6 \text{ B}; R_1 = 12 \text{ Om}, R_2 = 4 \text{ Om}, R_3 = 1 \text{ Om}$
3; 16	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ E_2 \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ k \end{bmatrix}$	$E_1 = 60 \text{ B}, E_2 = 65 \text{ B}; $ $R_1 = 5 \text{ Om}, R_2 = 5 \text{ Om}, $ $R_3 = 10 \text{ Om}.$
4; 17	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \\ \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ f \\ \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ \end{bmatrix}$	$E_1 = 29 \text{ B}, E_3 = 3 \text{ B}; $ $R_1 = 3 \text{ Om}, R_2 = 4 \text{ Om}, $ $R_3 = 1 \text{ Om}.$
5; 18	$\begin{bmatrix} \mathbf{a} & & \mathbf{b} & & \mathbf{c} \\ \mathbf{R}_1 & & \mathbf{R}_2 & & \mathbf{c} \\ \mathbf{d} & & \mathbf{e} & \mathbf{E}_2 & & \mathbf{f} \\ \mathbf{E}_2 & & \mathbf{f} & \mathbf{E}_3 \\ \mathbf{g} & & \mathbf{h} & & \mathbf{k} \end{bmatrix}$	$E_2 = 2 B,$ $E_3 = 35 B;$ $R_1 = 1 OM,$ $R_2 = 3 OM,$ $R_3 = 5 OM.$
6; 19	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \\ \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ f \\ k \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ k \end{bmatrix}$	$E_1 = 11 \text{ B}, \qquad E_2 = 10 \text{ B};$ $R_1 = 6 \text{ Om}, \qquad R_2 = 3 \text{ Om},$ $R_3 = 1 \text{ Om}.$
7; 20	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ e \\ f \\ E_3 \end{bmatrix} \begin{bmatrix} c \\ R_3 \\ f \\ E_3 \end{bmatrix}$	$E_1 = 19 \text{ B}, E_3 = 32 \text{ B}; $ $R_1 = 4 \text{ OM}, R_2 = 9 \text{ OM}, $ $R_3 = 1 \text{ OM}.$

8; 21	R_1 E_1 E_2 E_3 E_4 E_4 E_4 E_5 E_8	$E_1 = 24 \text{ B}, \qquad E_2 = 28 \text{ B}; \\ R_1 = 8 \text{ Om}, \qquad R_2 = 4 \text{ Om}, \\ R_3 = 2 \text{ Om}$
9; 22	R_1 E_2 E_3 E_3	$E_2 = 12 \text{ B},$ $E_3 = 26 \text{ B};$ $R_1 = 6 \text{ OM},$ $R_2 = 4 \text{ OM},$ $R_3 = 2 \text{ OM}.$
10; 23	$\begin{bmatrix} a \\ R_1 \\ d \\ E_1 \end{bmatrix} \begin{bmatrix} b \\ R_2 \\ f \\ k \end{bmatrix}$	$E_1 = 50 \text{ B}, E_2 = 69 \text{ B}; $ $R_1 = 2 \text{ Om}, R_2 = 7 \text{ Om}, $ $R_3 = 12 \text{ Om}.$
11; 24	$\begin{bmatrix} a \\ R_1 \\ b \\ E_2 \end{bmatrix}$ $\begin{bmatrix} c \\ R_3 \\ f \\ E_3 \\ k \end{bmatrix}$	$E_1 = 14 \text{ B}, \qquad E_3 = 24 \text{ B};$ $R_1 = 1 \text{ OM}, \qquad R_2 = 2 \text{ OM},$ $R_3 = 3 \text{ OM}.$
12; 25	$\begin{bmatrix} a \\ R_1 \\ b \\ R_2 \\ e \\ E_1 \\ b \end{bmatrix} \xrightarrow{c} R_3$	$E_1 = 12 \text{ B}, \qquad E_2 = 6 \text{ B};$ $R_1 = 4 \text{ OM}, \qquad R_2 = 2 \text{ OM},$ $R_3 = 3 \text{ OM}.$
13; 26	$\begin{bmatrix} a \\ R_1 \\ d \\ \end{bmatrix} \begin{bmatrix} B_2 \\ C \\ E_2 \\ \end{bmatrix} \begin{bmatrix} C \\ R_3 \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ R_3 \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C \\ C \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C \\ C \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C \\ C \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C \\ C \\ C \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C \\ C \\ C \\ C \\ C \\ \end{bmatrix} \begin{bmatrix} C \\ C$	$E_1 = 11 \text{ B}, E_3 = 2 \text{ B}; $ $R_1 = 2 \text{ Om}, R_2 = 5 \text{ Om}, $ $R_3 = 1 \text{ Om}.$

ПРАКТИЧЕСКАЯ РАБОТА №4

Расчеты электрических цепей методом преобразований

Цель: научиться рассчитывать нелинейные электрические цепи постоянного тока методом преобразований.

Теоретическая часть

В сложных электрических цепях часто встречаются ветви, соединенные треугольником (рис. 1.4, а) или звездой (рис. 1.4, б) .

Соединения такого вида очень распространены в трехфазных цепях, при этом часто возникает необходимость перехода от одного вида соединения к другому, но эквивалентному. Кроме того, такое преобразование часто применяется для упрощения схемы.

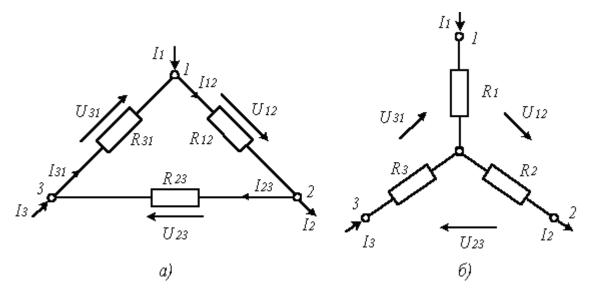


Рис. 1.4. Схемное соединение резисторов треугольником (рис. а) и звездой (рис. б)

Практический интерес представляют соотношения сопротивлений резисторов этих цепей при их эквивалентных преобразованиях. Условие эквивалентности преобразования этих цепей заключается в том, что при одинаковых напряжениях между узлами 1, 2 и 3, втекающие (вытекающие) извне токи I_1 , I_2 , I_3 в этих узлах также одинаковы, т.е. должны быть одинаковыми сопротивления между этими узлами.

Рассмотрим эквивалентное преобразование звезды в треугольник и треугольника в звезду на схемах приведенных на рис.

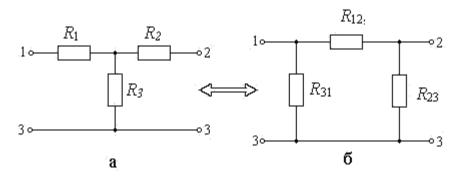


Рис. Схема для расчета правила эквивалентного преобразование звезды в треугольник и треугольника в звезду

Для того, чтобы преобразование было эквивалентным, достаточно равенства сопротивлений между точками 1-2, 2-3 и 3-1 в обеих схемах. Запишем систему

уравнений для сопротивлений между указанными точками для обеих схем.

Для точек 1-2:

$$R_1 + R_2 = \frac{R_{12}(R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}} ; (1.15)$$

Для точек 2 - 3:

$$R_2 + R_3 = \frac{R_{23}(R_{12} + R_{31})}{R_{12} + R_{23} + R_{31}} ; {1.16}$$

Для точек 3-1:

$$R_1 + R_3 = \frac{R_{31}(R_{12} + R_{23})}{R_{12} + R_{23} + R_{31}} . {1.17}$$

Если решить эту систему относительно сопротивлений R_{12} , R_{23} и R_{31} получим формулы преобразования звезды в треугольник:

$$R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}, \quad R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}, \quad R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_2}. \tag{1.18}$$

Если решить систему исходных уравнений относительно сопротивлений R_1 , R_2 и R_3 получим формулы преобразования треугольника в звезду:

$$R_{I} = \frac{R_{I2}R_{3I}}{R_{I2} + R_{23} + R_{3I}}, R_{2} = \frac{R_{23}R_{I2}}{R_{I2} + R_{23} + R_{3I}}. R_{3} = \frac{R_{3I}R_{23}}{R_{I2} + R_{23} + R_{3I}}.$$
 (1.19)

Пример выполнения работы.

Требуется рассчитать цепь, показанную на рис. a, при следующих числовых значениях ее параметров: E = 660 B, $R_1 = 20 \text{ Om}$, $R_2 = 30 \text{ Om}$, $R_3 = 5 \text{ Om}$, $R_4 = 20 \text{ Om}$, $R_5 = 50 \text{ Om}$.

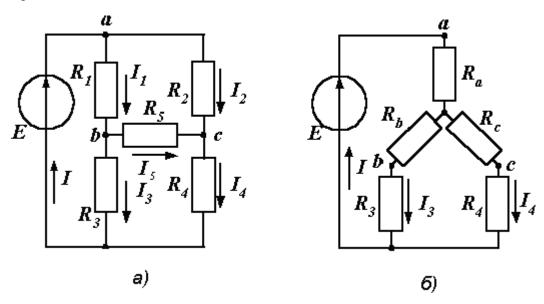


Рис. 1.7. Преобразования электрической цепи в примере 2.

Попытка определить общее сопротивления цепи на рис. не зная правил эквивалентного преобразования треугольника в звезду и наоборот, оказывается безрезультатной, так как здесь мы не находим ни последовательно, ни параллельно соединенных сопротивлений. Решить задачу помогает преобразование треугольника сопротивлений в эквивалентную звезду.

Решение.

Решение выполняем преобразованием треугольника в звезду.

После преобразования треугольника, образованного сопротивлениями R_1 , R_2 и R_5 , в звезду, получаем схему, показанную на рис. б. Обращаем внимание на то, что токи в непреобразованной части схемы (I, I_3 и I_4) остались теми же.

Сопротивления звезды определяем по сформулированному выше правилу:

$$R_a = \frac{R_1 R_2}{R_1 + R_2 + R_5} = 6 \text{ OM}; \quad R_b = \frac{R_1 R_5}{R_1 + R_2 + R_5} = 10 \text{ OM}; \quad R_c = \frac{R_2 R_5}{R_1 + R_2 + R_5} = 15 \text{ OM}.$$

Теперь общее сопротивление цепи легко находится:

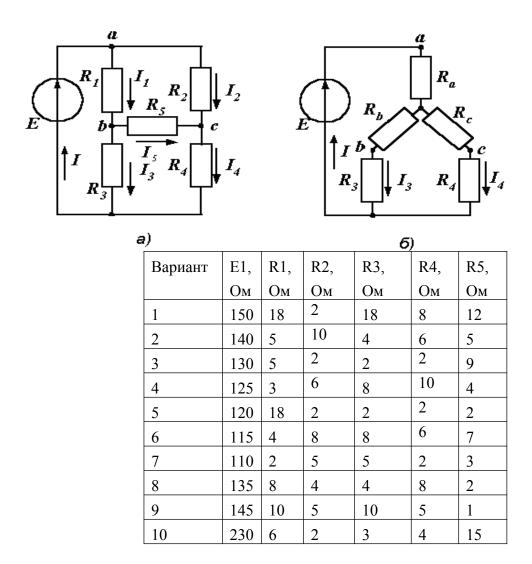
$$R_{9KB} = R_a + \frac{(R_b + R_3)(R_c + R_4)}{R_b + R_3 + R_c + R_4} = 16,5 \text{ Om.}$$

Ток, протекающий по источнику (одинаковый в заданной и преобразованной схемах), равен

$$I = E / R_{avg} = 40 \text{ A}.$$

Токи в параллельных ветвях:

$$I_3 = I \frac{R_c + R_4}{R_a + R_b + R_5} = 28 \text{ A}; \qquad I_4 = I \frac{R_b + R_3}{R_a + R_b + R_5} = 12 \text{ A}.$$

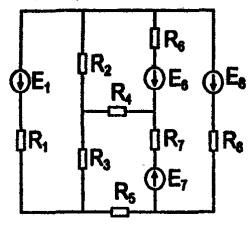

Возвращаемся к исходной схеме (рис. а) и находим:

$$I_1 = \frac{U_{ab}}{R_1} = \frac{E - I_3 R_3}{R_1} = 26 \text{ A};$$
 $I_2 = \frac{U_{ac}}{R_2} = \frac{E - I_4 R_4}{R_2} = 14 \text{ A}.$

Ток в пятой ветви находим из первого закона Кирхгофа: $I_5 = I_1 - I_3 = 26 - 28 = -2$ А. Знак минус говорит о том, что действительное направление тока I_5 противоположно указанному на схеме.

Залание

Для заданной схемы согласно своему варианту выданному преподавателем, рассчитать цепь методом преобразования.



Содержание отчета

- 1. Наименование работы.
- 2. Цель работы.
- 3. Схема
- 4. Задание
- 5. Вывод.

ПРАКТИЧЕСКАЯ РАБОТА №5 «Расчет цепей постоянного тока методом контурных токов»

Задание: Для электрической схемы, вычерченной в соответствии с вариантом:

Определить токи в ветвях методом контурных токов. Составить баланс мощностей, для любого контура вычертить потенциальную диаграмму.

Исходные данные к расчетным заданиям

			3									
N⊵	эдс	исто	чнико	в, В		Сопротивления рези				тивления резисторов, Ом		
п/п	E_1	E_6	E7	E_8	R_1	R_2	R ₃	R_4	R_5	R6.	R_7	.Rs
1	0	30	20	0	1,2	1,8	2,0	0	0	1,0	1,6	80
2	0	35	15	0	1,6	1,8	1,2	0	0	1,6	2,0	00
3	0	25	35	0	1,2	1,6	1,0	0	0	1,8	2,1	80
4	0	20	25	0	1,0	2,0	1,6	0	0	1,8	2,2	œ
5	0	25	30	0	1,8	2,0	1,0	Ó	0	1,6	2,3	∞
6	0	40	20	0	1,2	1,0	1,6	0	0	1,8	2,4	∞
7	0	50	20	0	1,6	1,8	1,2	0	0	1,0	2,5	80
8	0	20	30	0	1,0	1,8	1,6	œ	0	1,2	2,6	∞,
9	25	0	0	20	1,0	0	2,0	∞	1,2	O	1,6	1,8
10	40	0	0	20	2,0	0	1,2	œ	1,0	0	1,8	1,6
11	35	0	0	20	1,6	0	2,0	00	1,2	0	1,0	1,8
12	30	0	0	15	1,2	0	1,6	00	2,0	0	1,0	1,8
13	20	0	0	30	1,0	0	2,0	80	1,8	0	1,6	1,2
14	25	0	0	15	1,8	0	2,0	∞	1,2	0	1,0	1,6
15	30	0	0	20	2,0	0	1,8	00	1,0	0	1,2	1,6
16	35	0	0	15	1,8	0	2,0	8	1,0	0	1,6	1,2
17	20	0	0	25	1,0	80	0	2,0	1,2	0	2,0	1,8
18	20	0	0	40	2,0_	∞	0	1,2	1,6	0	1,0	1,6
19 .	20	0	0	35	1,6	ဆ	0	1,0	1,2	0	1,6	1,8
20	15	0	0	20	1,2	œ	0	1,6	1,0	0	1,0	1,8
21	30	0	0	25	1,0	000	0	1,0	1,8	0	1,6	1,2
22	15	0	0	30	1,8	∞	0	1,6	1,2	0	1,2	1,6
23	20	0	0	35	2,0	∞	0	1,2	1,6	0	1,6	1,6
24	15	0	0	20	1,8	×	0	1,6	1,0	0	1,6	1,2
25	25	0	30	20	1,2	80	0	8	1,0	1,2	0	1,2
26	40	0	35	15	1,0	90	ò	8	1,0	2,0	0	1,6
27	35	0	25	30	1,8	οó	0	80	1,2	1,8	0	1,6
28	30	0	40	15	2,0	90	0	œ	1,8	1,2	0	1,2
29	20	0	50	20	1,8	90	0	8	2,0	1,0	0	1,8
30	25	0	20	15	1,0	8	0	80	1,2	1,6	0	1,8
		•	t I									

ПРАКТИЧЕСКАЯ РАБОТА №6 «Графический расчет нелинейной цепи»

Задача 1. Определить ток и напряжение на участках цепи, состоящей из резистора с

4 H3 7 1 1/2

сопротивлением r и нелинейного элемента при напряжении цепи $0.6U_0$. Нелинейный элемент имеет вольт-амперную характеристику, уравнение которой $I=0.04\cdot U_0^2$

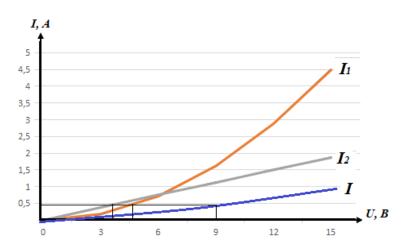
Определить статическое и динамическое сопротивление в точке 0.6 U $^{
m C}$

№ варианта	г, Ом	U ₀ цепи, В
1;6	17	10
2; 7	13	15
3; 8	12	15
4; 9	10	12
5;10	5	20

Последовательность решения:

1) построить ВАХ линейного элемента по уравнению

$$I_2 = \frac{U_0}{r}$$


Это прямая, которая строится по двум точкам (0;0) $(U_0;I_2)$;

2) в этом же диапазоне тока строим ВАХ нелинейного элемента. Задать несколько (3-4) значений I в пределах от 0 до заданного значения I_{lmax} . Рассчитать значение U по

формуле
$$U = \sqrt{\frac{l_1}{0.04}}$$
. Полученные значения занести в таблицу;

U, B			
I ₁ , A			

3) строим на одной координатной плоскости два графика I_1 =f(U) и I_2 =f(U). Строим сумму графиков I. Для значения U = 0,6 U_0 , определяем значение тока в цепи I и падение напряжения на каждом элементе U_1 U_2 .

ПРАКТИЧЕСКАЯ РАБОТА 7 Расчет характеристик магнитного поля

Варианты 1-5 Задача 1, 6

Варианты 6-10 Задача 2, 6

Варианты 11-15 Задача 3, 6

Варианты 16-20 Задача 4, 6

Варианты 21-25 Задача 5, 6

- 1. Вычислите индукцию магнитного поля, обеспечивающую в контуре с числом витков w=100 и активной длиной проводника l=60 мм ЭДС, равную 4,8 В. Контур движется с линейной скоростью $v=1\,000$ мм/с. По правилу какой руки определяется направление ЭДС ?
- 2. Вычислите индукцию магнитного поля, действующего на проводник длиной l=60 см, по которому течет ток I=15 A, если электромагнитная сила F=6,3 H. По правилу какой руки определяется направление электромагнитной силы ?
- 3. На проводник длиной l = 10 см с током I = 2 А действует магнитное поле с индукцией В

- = 1,3 Тл (рис. 4.4, а). Определите значение и направление силы, действующей на проводник.
- 4. Проводник длиной l=10 см перемещается в магнитном поле с индукцией B=1,3 Тл (рис. 4.4, б). Скорость перемещения проводника v=1 00 см/с. Определите значение и направление ЭДС в проводнике.

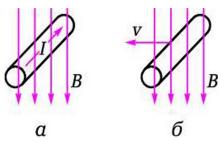


Рис. 4.4. Проводник с током в магнитном поле: а — к задаче 3; б — к задаче 4

- 5. Чему равна индуктивность катушки L, если при скорости изменения тока $\Delta I/\Delta t = 2$ A/c в ней индуцируется ЭДС самоиндукции E =3B?
- 6. Покажите прямыми линиями на рисунке соответствие между параметром магнитного поля, его буквенным обозначением и единицей измерения.

Наименование
Индукция
Напряженность магнитного поля
Намагничивающая сила
Магнитный поток
Магнитная постоянная

Обозначение
Ооозначение
Φ
Iw
В
μ_0
Н

Единица измерения
А/м
Тл
Гн/м
A
Вб

ПРАКТИЧЕСКАЯ РАБОТА №8

Расчет цепи переменного тока с последовательным соединением элементов.

Задание Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), включенные последовательно. Схема цепи приведена на соответствующем рисунке. Номер рисунка и значения сопротивлений всех элементов, а также один дополнительный параметр заданы в табл. 1.

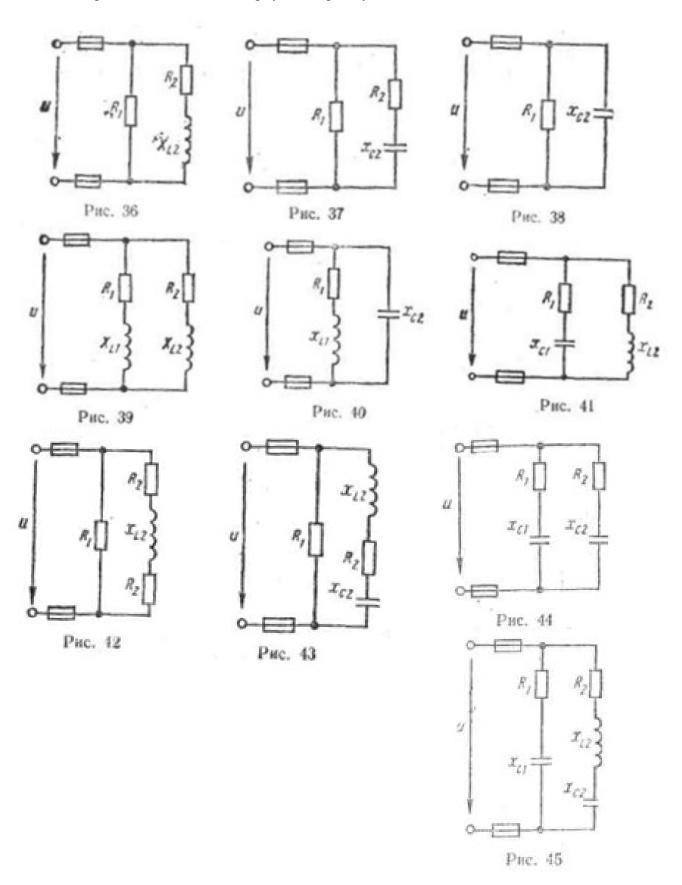
Начертить схему цепи и определить следующие величины, относящиеся к данной цепи, если они не заданы в табл. 4: 1) полное сопротивление Z; 2) напряжение U, приложенное к цепи; 3) ток I; 4) угол сдвига фаз φ (по величине и знаку); 5) активную P, реактивную Q и полную S мощности цепи. Начертить в масштабе векторную диаграмму цепи и пояснить ее построение. C помощью логических рассуждений пояснить характер изменения (увеличится, уменьшится, останется без изменения) тока, активной, реактивной мощности в цепи при увеличении частоты тока в два раза, Напряжение, приложенное к цепи, считать неизменным.

Таблица 1

Номер вариант	Номер рисунк	R ₁ , Ом	R ₂ , Ом	X _{L1} , Ом	X _{1.2} , Ом	X _{С1} , Ом	X _{C2} , Ом	Дополнительный параметр
a	a							
01	16	4	-	6	-	3	-	$Q_{L1} = 150 \text{ Bap}$
02	17	6	2	3	-	9	-	U = 40 B
03	18	10	6	_	-	12	_	I = 5 A
04	19	6	2	6	-	-	_	$P_{R1} = 150 \text{ B}_{T}$
05	20	4	4	3	3	-	_	$S = 360 B \cdot A$
06	21	3	_	_	-	2	2	I = 4 A
07	22	8	_	12	_	4	2	$P = 200 B_T$
08	23	16	_	10	8	6	_	U = 80 B
09	24	10	6	_	_	8	4	I = 2 A
10	25	2	2	5	_	6	2	Q = - 192 вар
11	16	3	-	2	-	6	-	U = 50 B

12	17	4	4	4	_	10	_	I = 4 A
13	18	4	2	_	_	8	_	$U_{R1} = 20 B$
14	19	8	4	16	_	_	_	$S = 320 B \cdot A$
15	20	6	10	8	4	_	_	$P = 400 B_T$
16	21	6	_	_	_	5	3	$S = 160 B \cdot A$
17	22	12	_	4	_	12	8	I = 4 A
18	23	6	_	8	4	4	_	$P = 54 B_T$
19	24	8	4	_	_	6	10	$S = 180 B \cdot A$
20	25	8	8	12	_	4	2	$P = 256 \text{ B}_{\text{T}}$
21	16	6	_	10	_		_	I = 5 A
22	17	4	2	12	_	2 4	_	P = 24 BT
23	18	5	3	_	_	6	_	$S = 250 B \cdot A$
24	19	3	1	3	_	_	_	$Q_{L1} = 80$ вар
25	20	4	8	10	6	_	_	Q = 64 вар
26	21	8	-	_	_	4	2	U = 40 B
27	22	6	-	12	_	2	2	$U_{L1} = 60 B$
28	23	4	-	8	4	9	_	Q = 75 вар
29	24	2	6	_	_	4	2	$P_{R2} = 24 \text{ Br}$
30	25	4	2	4	_	8	4	$Q_{L1} = 16$ вар
31	16	8	-	4	_	10	_	P = 800 BT
32	17	3	3	2	_	10	_	$Q_{C1} = -160 \text{ Bap}$
33	18	2	2	_	-	3	_	P = 100 Br
34	19	4	4	6	-	-	-	I = 2 A
35	20	2	4	2	6	-	-	U = 60 B
36	21	16	-	-	-	4	8	Q = -300 Bap
37	22	4	-	10	-	4	3	$U_{C2} = 15 B$
38	23	12	-	14	10	8	-	$U_{R1} = 60 B$
39	24	4	2	-	-	4	4	$Q_{C2} = -256 \text{ Bap}$
40	25	1	2	6	-	8	2	$U_{C1} = 40 B$
41	16	12	-	18	-	2	-	$S = 500 B \cdot A$
42	17	8	4	20	-	4	-	$Q_{L1} = 500 \text{ Bap}$
43	18	2	1	-	-	4	-	$Q_{C1} = -100 \text{ Bap}$
44	19	10	6	12	_	_	-	U = 100 B
45	20	6	2	4	2	-	-	I = 4 A
46	21	12	-	-	-	10	6	$P = 48 B_T$
47	22	3	-	8	-	2	10	Q = -400 вар
48	23	6	-	5	3	8	-	$U_{C1} = 16 B$
49	24	1	3	-	-	2	1	Q = - 48 вар
50	25	10	6	18	-	4	2	$S = 80 B \cdot A$

ПРАКТИЧЕСКАЯ РАБОТА №9


Тема: Расчет сложных цепей переменного тока.

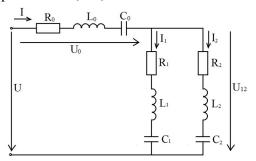
Задание:

Цепь переменного тока содержит различные элементы (резисторы, индуктивности, емкости), образующие две параллельные ветви. Схема цепи приведена на соответствующем рисунке. Номер рисунка, значения всех сопротивлений, а также один дополнительный параметр заданы в табл. 1. Индекс «1» у дополнительного параметра означает, что он относится к первой ветви; индекс «2» — ко второй.

Начертить схему цепи и определить следующие величины, если они не заданы в табл. 1: 1) токи I_1 и I_2 в обеих ветвях; 2) ток I в неразветвленной части цепи; 3) напряжение

U приложенное к цепи; 4) активную P реактивную Q и полную S мощности для всей цепи. Начертить в масштабе векторную диаграмму цепи.

№ вар	№ рис	R ₁ Ом	R ₂ Ом	X _{L1} Ом	X _{L2} Ом	X _{С1} Ом	X _{C2} Ом	Дополнительный параметр
01	36	5	3	-	4	-	-	Q = 64 вар
02	37	10	8	-	-	-	6	U = 20 B
03	38	4	-	-	-	-	5	$I_1 = 5 A$
04	39	4	6	3	8	_	-	$I_2 = 4 A$
05	40	16	-	12	-	_	10	$P = 256 \text{ B}_{\text{T}}$
06	41	24	16	-	12	32	-	U = 80 B
07	42	5	4	-	6	-	-	$I_2 = 6 A$
08	43	15	12	-	20	_	4	$P_1 = 240 \text{ BT}$
09	44	8	16	-	-	6	12	U = 100 B
10	45	4	8	-	12	3	6	$P_2 = 288 \text{ Br}$
11	36	10	6	-	8	_	-	U = 50 B
12	37	2	3	-	-	-	4	$I_1 = 5 A$
13	38	12	-	-	-	-	8	$I_2 = 6 A$
14	39	6	3	8	4	-	-	$P_2 = 300 \text{ BT}$
15	40	32	-	24	-	_	40	U = 120 B
16	41	12	8	-	10	16	-	Q _{L2} = 250 вар
17	42	2	2	-	3	-	-	$P_2 = 16 B_T$
18	43	5	8	-	4	-	10	U = 30 B
19	44	3	6	-	-	4	8	$I_2 = 4 A$
20	45	8	4	-	5	6	8	U = 20 B
21	36	4	4	-	3	-	-	$I_2 = 8 A$
22	37	5	4	-	-	-	3	$I_2 = 2 A$
23	38	2	-	-	-	-	4	U = 8 B
24	39	8	12	6	16	-	-	$Q_2 = 144$ вар
25	40	48	-	64	-	-	60	$U_{R1} = 144 B$
26	41	3	8	-	6	4	-	$I_1 = 5 A$
27	42	6	3	-	8	-	-	Q = 72 вар
28	43	10	6	-	12	-	4	Q = 32 вар


ПРАКТИЧЕСКАЯ РАБОТА № 10 Расчет цепи переменного тока методом комплексных чисел

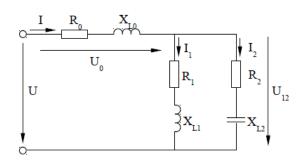
В схеме последовательно – параллельного соединения заданы напряжение цепи синусоидального тока и сопротивления элементов схемы.

Начертить схему цепи, включая те элементы, численные значения которых заданы в таблице по Вашему варианту.

Определить с помощью метода комплексных чисел значения всех токов I, I_1 , I_2 , напряжений U_0 , U_{12} ; активную P, реактивную Q и полную S мощности цепи, коэффициент мощности соs ϕ .

Построить векторную диаграмму токов и напряжений в масштабах на комплексной плоскости (по комплексам напряжений $U,\,U_0,\,U_{12}$ и комплексам токов $I,\,I_1,\,I_2$).

<i>№</i> вар.	U, B	R ₀ , Ом	X _{L0} , Ом	X _{C0} , Ом	R ₁ , Ом	X _{L1} , Ом	X _{С1} , Ом	R ₂ , Ом	X _{L2} , Ом	X _{C2} , Ом
1	60	5	5	0	8	0	6	6	8	0
2	130	10	0	0	6	8	0	0	0	10
3	85	5	0	0	4	3	6	0	5	0
4	130	0	0	5	3	7	3	5	0	0
5	185	5	0	40	20	40	0	20	0	40
6	100	5	5	0	6	0	8	8	6	0
7	130	3	4	0	0	0	5	5	5	0
8	125	0	50	0	30	80	40	0	0	50
9	200	3,2	17,6	0	16	12	0	8	14	20
10	125	11,6	0	13,8	10	10	0	30	10	50
11	120	12	8	0	16	0	14	18	12	0
12	280	24	0	0	12	18	0	0	0	26
13	170	10	0	0	9,6	12,2	8	0	14	0
14	260	0	0	10	15	5	16	10	0	0
15	270	10	0	30	60	80	0	25	0	35
16	300	24	12	0	32	0	28	20	20	0
17	390	9	9	0	0	0	5	10	12	0
18	250	0	75	0	55	90	45	0	0	30
19	500	18	0	22	20,8	24,6	0	20	50	30
20	400	34,2	6,6	0	24	36	0	26	16	38
21	180	18	20	0	16	0	22	20	24	0
22	380	32	0	0	22,5	26,5	0	0	0	30
23	255	15	0	0	10	13	19	0	17	0
24	400	0	0	22	16	24	18	8	0	0
25	90	10	0	26	34	26	0	16	0	12
26	200	14	21	0	13	0	13	19	15	0
27	260	12	9	0	0	0	16	7	7	0
28	370	0	80	0	90,2	120,6	60	0	0	80
29	345	12	0	16	16,6	14,4	0	18	35	14
30	295	17	4,4	0	19	16,2	0	15	9	22


ПРИМЕР

Цепь переменного тока состоит из последовательно — параллельного соединения элементов. В первую параллельную ветвь включены последовательно активное и индуктивное сопротивления: R_1 =10 Ом, X_{L1} =20 Ом. Во вторую параллельную ветвь включены последовательно активное и емкостное сопротивления: R_2 =10 Ом, X_{C2} =20 Ом. В последовательный участок цепи включены последовательно активное и индуктивное сопротивления: R_0 =5 Ом, X_{L0} =40 Ом. Напряжение на зажимах цепи U=100 В.

Определить комплексным методом токи в параллельных ветвях I_1 , I_2 и ток I в неразветвленной части цепи; полную S, активную P и реактивную Q мощности и коэффициент мощности соѕ ϕ .

Построить векторную диаграмму напряжений и токов на комплексной плоскости.

Дано: $R_1 = 10 \text{ Om};$ $X_{L1} = 20 \text{ Om};$ $R_2 = 10 \text{ Om};$ $X_{C2} = 20 \text{ Om};$ $R_0 = 5 \text{ Om};$ $X_{L0} = 40 \text{ Om};$ U = 100 B;

cosφ.

Определить: I_1 , I_2 , I, S, P, Q, Pешение.

1 Комплексы полных сопротивлений параллельных ветвей:

$$Z_1 = R_1 + jX_{L1} = (10 + j20) O_M = 22.36e^{+j63.4^{\circ}} O_M;$$

 $Z_2 = R_2 - jX_{C2} = (10 - j20) O_M = 22.36e^{-j63.4^{\circ}} O_M.$

2 Комплекс полного сопротивления последовательного участка цепи:

$$Z_0 = R_0 + jX_{L0} = (5 + j40) O_M = 40.3e^{+j82.9^{\circ}} O_M$$

3 Комплекс полного сопротивления параллельного участка цепи:

$$Z_{12} = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2} = \frac{22.36 e^{j63.4^{\circ}} \cdot 22.36 e^{-j63.4^{\circ}}}{10 + j20 + 10 - j20} = \frac{500}{20} = 25 \ O_{\mathcal{M}}.$$

4 Комплекс полного сопротивления всей цепи:

$$Z_1 = Z_0 + Z_{12} = 5 + j40 + 25 = 30 + j40 = 50e^{j53.13^{\circ}}$$
 O.M.

5 Комплекс напряжения цепи.

Принимаем, что вектор напряжения будет исходным, совпадающим с положительным направлением действительной оси. Тогда:

$$\overline{U}$$
 =U=100 B.

6 Комплекс тока в неразветвленной части цепи определяем по закону Ома:

$$\dot{I} = \frac{\dot{U}}{Z} = \frac{100}{50e^{j53.13^{\circ}}} = 2e^{-j53.13^{\circ}} = (1.2 - j1.6) A$$

7 Действующее значение общего тока равно модулю его комплексного выражения: I=2 A

8 Напряжение на последовательном участке цепи, т. е. на сопротивлении Z₀.

$$\dot{U}_0 = \dot{I} \cdot Z_0 = 2e^{-j53.13^{\circ}} \cdot 40.3e^{j82.9^{\circ}} = 80.6e^{j29.77^{\circ}} B = (70 + j40) B$$

9 Напряжение на параллельном участке цепи:

$$\dot{U}_{12}=\dot{U}-\dot{U}_0=100$$
 – 70 – $j40=(30$ – $j40)$ $B=50e^{-j53.13^\circ}$ B или $\dot{U}_{12}=\dot{I}\cdot Z_{12}=2e^{-j53.13^\circ}\cdot 25=50e^{-j53.13^\circ}$ $B=(30$ – $j40)$ B

10 Комплексы токов параллельных ветвей по закону Ома:

$$\begin{split} \dot{I}_1 &= \frac{\dot{U}_{12}}{Z_1} = \frac{50e^{-j53.13^\circ}}{22.36e^{j63.4^\circ}} = 2.24e^{-j116.53^\circ} = -2.24e^{j(180^\circ-116.53^\circ)} = -2.24e^{j63.4^\circ} \ A = (-1-j2) \ A; \\ \dot{I}_2 &= \frac{\dot{U}_{12}}{Z_2} = \frac{50e^{-j53.13^\circ}}{22.36e^{-j63.4^\circ}} = 2.24e^{j10.27^\circ} \ A = (2.2+j0.4) \ A. \end{split}$$

11 Проверить вычисление комплексов токов можно по первому закону Кирхгофа:

$$\dot{I} = \dot{I}_1 + \dot{I}_2$$
; 1.2 – j 1.6 = –1 – j 2 + 2.2 + j 0.4; (1.2 – j 1.6) A = (1.2 – j 1.6) A . Вычисления выполнены верно.

12 Действующие значения токов ветвей равны соответственно модулям их комплексных выражений:

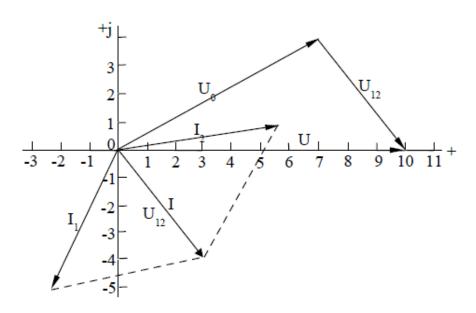
13 Комплекс полной мощности определяется как произведение комплекса напряжения и сопряженного комплекса тока:

$$\dot{S} = \dot{U} \cdot \dot{I}^* = 100 \cdot 2e^{j53.13^\circ} = 200e^{j53.13^\circ} BA = (120 + j160) BA;$$

 $_{\text{T. K.}} S = P \pm jQ_{, \text{ TO}}$

активная мощность Р=120 Вт;

реактивная мощность Q=160 вар;


полная мощность – это модуль комплекса S=200 BA.

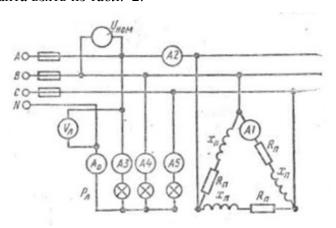
14 Построение векторной диаграммы легче выполнить на комплексной плоскости, используя алгебраическое выражение токов и напряжений и соотношения: ; , в заданных масштабах $M_U=10$ В/см и $M_I=0,4$ А/см.

штабах $\dot{I} = \dot{I}_1 + \dot{I}_2$ $\dot{U} = \dot{U}_0 + \dot{U}_{12}$ $\dot{U}_{12} = 0.4$ Векторная диаграмма построена на

рисунке.

Координаты концов векторов: \overline{U} (10; 0); \overline{U}_0 (7; 4); \overline{U}_{12} (3; -j4); \overline{I}_1 (-2.5; -j5); \overline{I}_2 (5.5; j1); \overline{I} (3; -j4).

ПРАКТИЧЕСКАЯ РАБОТА №11 Расчет трехфазных электрических цепей


Задача № 1. Каждая фаза трехфазного симметричного потребителя (электродвигатель переменного тока) рассчитана на фазное напряжение U_{ϕ} и имеет активное R_{ϕ} и индуктивное x_{ϕ} сопротивления. Номинальное напряжение сети $U_{\text{ном } 1}$. Выбрать схему соединения потребителя в зависимости от номинального напряжения сети $U_{\text{ном } 1}$ (звездой или треугольником) и начертить ее. Определить активную P, реактивную Q и полную S мощности, расходуемые потребителем. Вычислить потребляемый линейный ток. Начертить векторную диаграмму.

Как нужно соединить фазы потребителя (звездой или треугольником) для включения его в сеть с номинальным напряжением $U_{\text{ном 2}}$? Начертить схему соединения потребителя, вычислить линейные токи в проводах при таком включении. Данные для своего варианта взять из табл.1.

Таблица 1.

Номер	U _φ , Β	R _ф , Ом	х _ф , Ом	U _{ном 1,} В	U _{ном 2,} В
варианта	Φ, Β	Rφ, OM	х ф, Ом	Оном 1, В	О ном 2, В
1	220	8,5	5,25	380	220
2	380	17	10,5	380	660
3	127	34	21	220	127
4	220	4,25	2,6	220	380
5	380	5,4	2,6	660	380
6	127	13,5	6,55	127	220
7	380	7,2	3,5	660	380
8	220	18	8,7	380	220
9	127	22,5	10,9	220	127
10	220	10,2	6,3	220	380

Задача № 2. В трехфазную четырехпроводную сеть включили трехфазную сушильную печь, представляющую собой симметричную активно-индуктивную нагрузку с сопротивлениями R_n и x_n , и лампы накаливания мощностью P_n каждая. Обмотки печи соединены треугольником лампы накаливания - звездой. Количество ламп в каждой фазе n_A , n_B и n_C задано. Номинальное напряжение сети $U_{\text{ном}}$. Схема сети приведена на рисунке. Определить показания амперметров A1, A2, A3, A4, A5 и вольтметра V_n , Начертить в масштабе векторную диаграмму цепи. Для соединения ламп накаливания, из которой найти числовое значение тока в нулевом проводе I_0 (показание амперметра A_0), Данные для своего варианта взять из табл. 2.

Номер	R _n	X _n	\mathbf{P}_{π}	n _A	n _B	\mathbf{n}_{C}	\mathbf{U}_{HOM}
варианта	Ом	Ом	Вт	ШТ	ШТ	ШТ	В
1	4	3	200	50	80	30	380
2	6	8	300	40	30	60	220
3	12	16	500	20	40	30	380
4	3	4	200	80	50	40	220
5	8	6	150	100	60	50	220
6	18	12	300	50	70	40	380
7	32	24	500	30	40	60	380
8	8	6	150	80	100	50	220
9	4	3	300	60	40	30	380
10	24	32	200	40	80	80	220

ПРАКТИЧЕСКАЯ РАБОТА №12 Расчет однофазного трансформатора

Цель: Рассчитать основные параметры однофазного трансформатора **Краткие теоретические сведения:**

Трансформатором называют статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения.

Работа трансформатора основана на явлении взаимоиндукции. Простейший трансформатор состоит из стального сердечника (магнитопровода) и двух расположенных на нем обмоток (рис.1а).

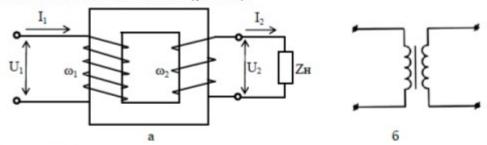


Рис1.— Принципиальная схема включения однофазного трансформатора с потребителем а), изображение трансформатора на схеме б).

Одна обмотка подсоединяется к источнику переменного тока и называется первичной. К другой обмотке, называемой вторичной, подключают потребителей.

При прохождении переменного тока по первичной обмотке в сердечнике образуется переменный магнитный поток. Это поток пересекает витки вторичной обмотки и наводит в них переменную ЭДС взаимоиндукции. Если вторичная обмотка замкнута на потребитель, то по цепи потребителя начинает проходить переменный ток.

Если во вторичной обмотке число витков больше чем в первичной, то напряжение вторичной обмотки превышает напряжение первичной обмотки и трансформатор будет повышающий. Если в первичной обмотке число витков больше чем во вторичной, то напряжение вторичной обмотки меньше напряжения первичной обмотки и трансформатор будет понижающий.

Основные параметры трансформатора

1. Номинальная мощность SH – это полная мощность, которую трансформатор может непрерывно отдавать н течение своего срока службы при номинальном напряжении и номинальных температурных условиях

$$SH = U_{2H} \cdot I_{2H}, BA \tag{1}$$

- Номинальное первичное напряжение U_{1H} напряжение, на которое рассчитана первичная обмотка
- 3. Номинальное вторичное напряжение U_{2H} напряжение на зажимах вторичной обмотки в режиме холостого хода трансформатора при номинальном первичном напряжении.
 - 4. Коэффициент трансформации

$$K = \frac{W_1}{W_2} = \frac{E_1}{E_2} = \frac{U_{1H}}{U_{2H}} = \frac{I_{2H}}{I_{1H}} \tag{2}$$
 где w - число витков первичной и вторичной обмоток;

Е – действующее значение ЭДС электромагнитной индукции в обмотках трансформатора.

 Номинальный первичный Ізн и вторичный Ізн токи в обмотках трансформатора при номинальной мощности и номинальных напряжениях обмоток

$$I_{1H} = \frac{S_H}{U_{1H} \cdot \eta_H}, A$$
 (3)
$$I_{2H} = \frac{S_H}{U_{2H}}, A$$
 (4)

Коэффициент нагрузки трансформатора. Трансформатор чаще всего работает с нагрузкой, меньше номинальной, поэтому

$$K_{H\Gamma} = \frac{S_2}{S_H} \tag{5}$$

где S₂ - фактическая полная мощность нагрузки

$$S_2 = \sqrt{P_2^2 + Q_2^2}, BA \tag{6}$$

7. Токи в обмотках трансформатора при фактической нагрузке S2

$$I_1 = I_{1H} \cdot K_{H\Gamma}, A \tag{7}$$

$$I_2 = I_{2H} \cdot K_{H\Gamma}, A \tag{8}$$

8. Общая мощность потерь энергии в трансформаторе:

- при номинальной нагрузке
$$\Delta P_{\text{H}} = P_{\text{CT}} + P_{\text{MH}}, Bm$$
 (9) - при фактической нагрузке $\Delta P = P_{\text{CT}} + P_{\text{M}} = P_{\text{CT}} + P_{\text{MH}} \cdot K^2_{\text{HT}}, Bm$ (10)

где $Pc\tau$ - мощность потерь в стали сердечника;

 P_{M} - мощность потерь в обмотках трансформатора при фактической нагрузке; Рмн - мощность потерь в обмотках при номинальной нагрузке.

Если известно сопротивление меди первичной (R₁) и вторичной (R₂) обмоток трансформатора, то при любой нагрузке можно определить мощность потерь в обмотках

$$P_{M} = I_{2}^{2} R_{1} + I_{2}^{2} R_{2}, Bm$$
 (11)
9. Коэффициент мощности нагрузки

$$\cos \varphi_2 = \frac{P_2}{S_2} \tag{12}$$

где P_2 , Q_2 , S_2 – активная, реактивная и полная мощность нагрузки, питаемой от вторичной обмотки трансформатора.

10. Коэффициент полезного действия трансформатора

при номинальной нагрузке

$$\eta_{H} = \frac{P_{2H}}{P_{1H}} = \frac{P_{2H}}{P_{2H} + \Delta P_{H}} = \frac{S_{H} \cdot \cos \varphi_{2}}{S_{H} \cdot \cos \varphi_{2} K_{HT} + P_{CT} + P_{MH}}$$
— при фактической нагрузке

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + \Delta P} = \frac{S_H \cdot \cos \varphi_2 \cdot K_{HT}}{S_H \cdot \cos \varphi_2 K_{HT} + P_{CT} + P_{MH} \cdot K^2_{HT}}$$
(14)

Порядок выполнения расчета

- 1. Выписать исходные данные согласно варианту (таблица 8.1) и вычертить схему цепи (рисунок 1 а).
 - 2. Ознакомиться с параметрами однофазного трансформатора.
- 3. Выполнить расчет неизвестных параметров, отмеченных в таблице 1 прочерками.
 - 4. В заключении кратко описать принцип действия и виды трансформаторов.

Пример расчета

Дано:

- -номинальная мощность SH=100 BA;
- -номинальное первичное напряжение $U_{lH}=220 B$;
- -номинальное вторичное напряжение $U_{2H}=22 B$;
- -активная мощность нагрузки P_2 =48 Bm;
- -реактивная мощность нагрузки Q2=36 вар;
- -мощность потерь в стали сердечника *Pcm*=7,3 *Bm*;
- -мощность потерь в обмотках при номинальной нагрузке P_{MH} =5,66 Bm.

Определить:

- -коэффициент трансформации трансформатора;
- -полную мощность нагрузки;
- -коэффициент мощности нагрузки;
- коэффициент нагрузки трансформатора;
- -КПД трансформатора при номинальной нагрузке;
- номинальные токи в обмотках трансформатора;
- -токи в обмотках трансформатора при фактической нагрузке;
- -потери мощности в трансформаторе при фактической нагрузке;
- КПД трансформатора при фактической нагрузке.

Порядок расчета

1. Коэффициент трансформации трансформатора

$$K = \frac{U_{1H}}{U_{2H}} = \frac{220}{22} = 10$$

Таблица 1 – Исходные данные для расчета

		1	2	3	4	5	6	7	8	9	10
_			_							_	
Вари	ант	11	12	13	14	15	16	17	18	19	20
		21	22	23	24	25	26	27	28	29	30
S_H	BA	-	1270	-	500	1500	4000	400	-	-	600
S_2	DA	-	-	-	-	-	-	-	-	-	-
U_{lH}	В	100	-	-	-	5800	-	-	300	180	100
U_{2H}	Б	10	100	220	127	120	127	-	-	36	10
K		-	2,5	8,18	-	-	-	0,4	4,4	-	-
K_{E}	ΙΓ	-	-	-	-	-	-	0,83	0,68	-	-
Q_{2},ϵ	зар	225	-	250	-	590	-	-	120	-	-
cos	φ_2	-	0,8	0,6	0,87	-	1	-	0,73	1	0,93
I_{lH}		-	-	-	1,7	-	-	2,6	-	-	12,5
I_{2H}	4	25	-	3,5	-	-	-	-	-	3,5	-
I_1	A	-	-	-	-	-	9,6	-	-	-	-
I_2		-	-	-	-	-	-	-	-	-	-
η_{J}	Н	-	0,95	0,94	-	-	-	0,92	-	-	0,96
η		-	-	-	-	-	0,97	-	-	-	-
P_2		375	700	-	260	850	2100	-	-	72	432
P_{CT}	Bm	2,32	9,8	-	18,2	42,15	-	21,2	14	4,1	11
P_{MH}		4,8	-	2,4	17	27,9	50	10,4	7,3	1,69	-

2. Полная мощность нагрузки, питающейся энергией от вторичной обмотки трансформатора

$$S_2 = \sqrt{P_2^2 + Q_2^2} = \sqrt{48^2 + 362} = 60BA$$

3. Коэффициент мощности нагрузки

$$\cos \varphi_2 = \frac{P_2}{S_2} = \frac{48}{60} = 0.8$$

4. Коэффициент нагрузки трансформатора

$$K_{HT} = \frac{S_2}{S_H} = \frac{60}{100} = 0.65$$

5. КПД трансформатора при номинальной нагрузке

$$\eta_{H} = \frac{P_{2H}}{P_{1H}} = \frac{S_{H} \cdot \cos \varphi_{2}}{S_{H} \cdot \cos \varphi_{2} K_{HT} + P_{CT} + P_{MH}} = \frac{100 \cdot 0.8}{100 \cdot 0.8 + 7.3 + 5.66} = 0.86$$

Номинальные токи в обмотках трансформатора

$$\begin{split} I_{1H} &= \frac{S_H}{U_{1H} \cdot \eta_H} = \frac{100}{220 \cdot 0,86} = 0,528\,A \\ I_{2H} &= \frac{S_H}{U_{2H}} = \frac{100}{22} = 4,55\,A \end{split}$$

7. Токи в обмотках трансформатора при фактической нагрузке

$$I_1 = I_{1H} \cdot K_{HT} = 0.528 \cdot 0.6 = 0.317 A$$

$$I_2 = I_{2H} \cdot K_{H\!\Gamma} = 4{,}55 \cdot 0{,}6 = 2{,}73\,A$$

- 8. Потери мощности в трансформаторе при фактической нагрузке $\Delta P = P_{cr} + P_{MF} \cdot K^2_{HF}$, =7,3+5,66·0,6²=9,34*Bm*
- 9. КПД трансформатора при фактической нагрузке

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + \Delta P} = \frac{48}{48 + 9.34} = 0.837$$

Содержание отчета

- 1. Тема и цель занятия
- 2. Задание
- 3. Исходные данные
- 4. Схема включения трансформатора
- 5. Расчетная часть
- 6. Вывод

Контрольные вопросы

- 1. Объясните принцип работы однофазного трансформатора.
- 2. Почему трансформатор работает только на переменном токе?
- Как практически определить коэффициент трансформации?

ПРАКТИЧЕСКАЯ РАБОТА № 13 Расчет параметров асинхронного электродвигателя

Цель:

- 1. Научиться пользоваться справочными данными и расчетными формулами
- 2. Научиться пользоваться вычислительной техникой

Общие сведения

Решаемая на практическом занятии задача направлена на определение основных параметров асинхронного электродвигателя. Для ее решения необходимо знать устройство и принцип действия асинхронного двигателя и зависимости между электрическим величинами, характеризующими его работу.

Перед решением задачи изучите соответствующий теоретический материал и рассмотрите типовой пример.

При частоте напряжения питающей сети 50 Γ ц возможные синхронные частоты вращения магнитного поля статора: 3000, 1500, 1000, 750, 600 об/мин и т.д. Тогда при частоте вращения ротора n_2 = 950 об/мин из приведенного выше ряда выбираем ближайшую к ней частоту вращения поля n_I = 1000 об/мин. Тогда можно определить скольжение ротора, даже не зная числа пар полюсов двигателя:

$$S = \frac{n_1 - n_2}{n_1} = \frac{1000 - 950}{1000} = 0.05$$

Из формулы для скольжения можно определить частоту вращения ротора

$$n_2 = n_1 \cdot (1 - S)$$

В настоящее время промышленность выпускает асинхронные двигатели с короткозамкнутым ротором серии 4A мощностью от 0,06 до 400 кВт (табл. 1). Обозначение типа электродвигателя расшифровывается так: 4 — порядковый номер

серии; А — асинхронный; X — алюминиевая оболочка и чугуные щиты (отсутствие буквы X означает, что корпус полностью выполнен из чугуна); В — двигатель встроен в оборудование; Н — исполнение защищенное IP23, для закрытых двигателей исполнения IP44 обозначение защиты не приводится; Р — двигатель с повышенным пусковым моментом; С — сельскохозяйственного назначения; цифра после буквенного обозначения показывает высоту оси вращения в мм (100, 112 и т. д.); буквы S, M, L — после цифр — установочные размеры по длине корпуса (S — станина самая короткая; М — промежуточная; L — самая длинная); цифра после установочного размера — число полюсов; буква У — Климатическое исполнение (для умеренного климата); последняя цифра — категория размещения: 1 — для работы па открытом воздухе, 3 — для закрытых неотапливаемых помещений.

Например. Необходимо расшифровать условное обозначение двигателя 4A250S4У3.

Это двигатель четвертой серии, асинхронный, корпус полностью чугунный (нет буквы X), высота оси вращения 250 мм, размеры корпуса по длине S (самый короткий), четырех полюсный, для умеренного климата, третья категория размещения.

Пример. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором типа 4AP160Б6У3 имеет номинальные данные: мощность $P_{\text{ном}} = 11$ кВт; напряжение $U_{\text{ном}} = 380$ В; частота вращения ротора $n_2 = 975$ об/мин; к.п.д. $\eta_{\text{ном}} = 0,855$; коэффициент мощности $\cos\phi_{\text{ном}} = 0,83$; кратность пускового тока $I_{\text{п}}/I_{\text{ном}} = 7$; кратность пускового момента $M_{\text{п}}/M_{\text{ном}} = 2,0$; способность к перегрузке $M_{\text{max}}/M_{\text{ном}} = 2,2$. Частота тока в сети $f_I = 50$ Гц.

Определить: 1) потребляемую мощность; 2) номинальный, пусковой и максимальный вращающие моменты; 3) номинальный и пусковой токи; 4) номинальное скольжение; 5) частоту тока в роторе. Расшифровать его условное обозначение. Оценить возможность пуска двигателя при номинальной нагрузке, если напряжение в сети при пуске снизилось на 20%?

Решение.

1. Мощность, потребляемая из сети

$$P_1 = \frac{P_{\text{MOW}}}{\eta_{\text{MOW}}} = \frac{11}{0.855} = 12.86 \text{ kBm}$$

2. Номинальный момент, развиваемый двигателем:

$$M = 9.55 \frac{P_{\text{NOM}}}{n_2} = \frac{9.55 \cdot 11 \cdot 1000}{975} = 107.7 \ H \cdot M$$

3. Максимальный и пусковой моменты:

$$M_{\text{max}} = 2.2 \cdot M_{\text{HOM}} = 2.2 \cdot 107,7 = 237 \ H \cdot M_{HOM} = 2 \cdot M_{\text{HOM}} = 2 \cdot 107,7 = 215.4 \ H \cdot M_{\text{HOM}}$$

4. Номинальный и пусковой токи:

$$I_{\text{MOSM}} = \frac{P_{\text{MOSM}} \cdot 1000}{\sqrt{3} \cdot U_{\text{MOSM}} \cdot \eta_{\text{MOSM}} \cdot \cos \varphi_{\text{MOSM}}} = \frac{11 \cdot 1000}{1,73 \cdot 380 \cdot 0,855 \cdot 0,83} = 23,6 \text{ A};$$

$$I_{II} = 7,0 \cdot I_{\text{MOSM}} = 7,0 \cdot 23.6 = 165 \text{ A}$$

5. Номинальное скольжение

$$S = \frac{n_1 - n_2}{n_t} = \frac{1000 - 975}{1000} = 0.025 = 2.5 \%$$

6. Частота тока в роторе

$$f_2 = f_1 \cdot s = 50 \cdot 0.025 = 1.25 \ \Gamma t$$

7. Условное обозначение двигателя расшифровываем так: двигатель четвертой серии, асинхронный, с повышенным скольжением (буква P), высота оси вращения 160 мм, размеры корпуса по длине S (самый короткий), шестиполюсный, для умеренного климата, третья категория размещения.

8.При снижении напряжения в сети на 20% на выводах двигателя остается напряжение $0.8~U_{\scriptscriptstyle HOM}$. Так как момент двигателя пропорционален квадрату напряжения, то

$$\frac{M_{II}^{'}}{M_{II}} = \frac{(0.8 \cdot U_{\text{MON}})^{2}}{U_{\text{MON}}^{2}} = \frac{(0.8 \cdot 380)^{2}}{380^{2}} = 0.64$$

Отсюда

$$M_{II} = 0.64 \cdot M_{II} = 0.64 \cdot 215.4 = 138 \ H \cdot M$$

что больше $M=107,7\ H\cdot M$. Таким образом, пуск двигателя возможен.

Порядок выполнения работы:

- 1. Отметьте в отчете наименование и цель занятия.
- 2. Отметьте в отчете исходные условия задачи и заданную схему.

Условия задачи и схемы цепей приведены в приложении.

- 3. Выполните предложенное задание. По необходимости, при выполнении задания практической работы, повторите теоретический материал и примеры, подобные заданию практической работы.
- 4. Оформите отчет по практической работе.

Приложение.

Для привода рабочей машины применяется трехфазный асинхронный электродвигатель с короткозамкнутым ротором. Используя данные для своего варианта, указанные в таблице 1, определить:

1)потребляемую мощность; 2) номинальный, пусковой и максимальный вращающие моменты; 3) номинальный и пусковой токи; 4) номинальное скольжение; 5) частоту тока в роторе.

Расшифровать его условное обозначение. Оценить возможность пуска двигателя при номинальной нагрузке, если напряжение в сети при пуске снизилось на 20%?

Таблица 1.

Номер варианта	Тип двигателя	Р _{ном2} , кВт	n ₂ , об/мин	соѕф _{ном}	$rac{I_{\pi}}{I_{\mathrm{acc}}}$	$rac{M_{\pi}}{M_{ m sea}}$	$rac{M_{_{ m max}}}{M_{_{823}}}$	$\eta_{\scriptscriptstyle{ ext{HOM}}}$
1	4Al00S2У3	4	2880	0,89	7,5	2,0	2,2	0,86
2	4A100L2У3	5,5	2880	0,91	7,5	2,0	2,2	0,87
3	4А112М2СУ3	7,5	2900	0,88	7,5	2,0	2,2	0,87
4	4Л132М2СУ3	11	2900	0,9	7,5	1,6	2,2	0,88
5	4A90L4У3	2,2	1400	0,83	6,0	2,0	2,2	0,8
6	4A100S4У3	3	1425	0,83	6,5	2,0	2,2	0,82

7	4A100L4Y3	4,0	1425	0,84	6,5	2,2	2,2	0,84
8	4А112М4СУ1	5,5	1450	0,85	7,0	2,0	2.2	0,85
9	4А132М4СУ1	11	1450	0,87	7,5	2,0	2,2	0,87
10	4AP160S4У3	15	I465	0,87	7,5	2,0	2,2	0,865
11	4AP160M4У3	18,5	1465	0,87	7,5	2,0	2,2	0,885
12	4AP180S4У3	22	1460	0,87	7,5	2,0	2,2	0,89
13	4AP180М4У3	30	1460	0,87	7,5	2,0	2,2	0,9
14	4A100L6У3	2,2	950	0,73	5,5	2,0	2,0	0,81
15	4AP160S6У3	11	975	0,83	7,0	2,0	2,2	0,855
16	4АР160М6У3	15	975	0,83	7,0	2,0	2,2	0,875
17	4АР180М6У3	18,5	970	0,8	6,5	2,0	2,2	0,87
18	4А250Ѕ6У3	45	985	0,89	6,5	1,2	2,0	0,92
19	4А250М6У3	55	985	0,89	7,0	1,2	2,0	0,92
20	4АН250М6У3	75	985	0,87	7,5	1,2	2,5	0,93
21	4A100L8У3	1,5	725	0,65	6,5	1,6	1,7	0,74
22	4АР160Ѕ8У3	7,5	730	0,75	6,5	1,8	2,2	0,86
23	4A250S8У3	37	740	0,83	6,0	1,2	1,7	0,9
24	4A250M8У3	45	740	0,84	6,0	1,2	1,7	0,91
25	4АН250М8У3	55	740	0,82	6,0	1,2	2,0	0,92

ПРАКТИЧЕСКАЯ РАБОТА №??????7 Расчет параметров генераторов

ЦЕЛЬ: рассчитать ток генератора в номинальном режиме, ЭДС генератора, номинальное изменение напряжения, ток в обмотке возбуждения, ток в цепи якоря при номинальной нагрузке.

Генератор постоянного тока имеет: номинальную мощность P_2 ; номинальное напряжение U; частоту вращения n; номинальный ток генератора I; ток в цепи возбуждения I_B ; ток в цепи якоря I_S ; сопротивление обмоток цепи обмотки возбуждения R_B ; сопротивление в цепи якоря R_S , приведенное к рабочей температуре; ЭДС якоря E; электромагнитный момент при номинальной нагрузке $M_{\text{эм}}$; электромагнитная мощность $P_{\text{эм}}$; мощность приводного двигателя P_1 ; КПД в номинальном режиме η .

Определить: для выбранного варианта значения параметров генератора постоянного тока, не указанные в таблицах 1, 2.

Таблица 1 **Параметры генератора**

Nº	P_2	U	n	I	$I_{ m B}$	$I_{\mathfrak{A}}$	R_{B} ,	$R_{\scriptscriptstyle\mathrm{H}}$
712	кВт	В	об/мин	A	A	A	Ом	Ом
1	24	230	1450	_	_	_	150	0,3
2	_	110	3000	_	_	17	Нет	0,55
3	_	220	1000	15,6	Нет	_	Нет	1

4	_	230	_	87	_	_	100	0,15
5	_	110	2000	25	_	_	Нет	_
6	_	220	630	80	Нет	_	Нет	0,144
7	-	460	_	_	4	_	-	_
8		110	3000	95	_	_	Нет	_
9	-	220	630	-	Нет	80	Нет	0,144
10	18	230	1500	ı	1	80	ı	1
11	-	110	3000	_	1	21,5	Нет	_
12		220	460	_	Нет	405	5,5	0,008
13	45	_	1000	97,8	1	_	92	1
14	1	110	4000	260	1	_	Нет	
15	ı	220	1000		Нет	16	0,8	0,9
16	ı	110	3600	ı	1,8	34	ı	ı
17	ı	110	4000	-		15	Нет	
18	ı	220	1000	15,6	Нет	-	Нет	1
19	ı	230	_	90		_	90	0,2
20	ı	110	3000	ı	1	170	Нет	1
21	1	220	630	_	Нет	175	4,6	
22	20	230	1450	_	_	92,5		
23	_	110	3000	95	_	_	Нет	_
24	_	220	460	405	Нет	_	Нет	0,009
25	_	110	3000	_	1,5	12	_	_

Таблица 2

Параметры генератора							
№	<i>E</i> B	$M_{\scriptscriptstyle 9 M}$ Н·м	$P_{\scriptscriptstyle ЭM}$ к \mathbf{B} т	P_1 к \mathbf{B} т	η %	Способ возбуждения	
1	_	1	_	_	90	параллельное	
2	_	_	_	_	89	последовательное	
3	_	_	_	_	87	независимое	
4	_	2		2	_	параллельное	
5	_	1			82	последовательное	
6	_	_	18,52	1	87	независимое	
7	480	5	55	_	88	параллельное	
8	_	3	-	_	85	последовательное	
9	_	_	_	_	86	независимое	
10	240	_	_	2	_	параллельное	
11	_	7	_	_	89	последовательное	
12	_	_		ı	85	независимое	
13	477	_		ı	88	параллельное	
14	_	7	_	_	88	последовательное	
15	_	_	_	_	85	независимое	
16	_	1	_	_	85	параллельное	
17	_	4	_		80	последовательное	
18	_	_	_	_	88	независимое	
19	_	2	_	2	_	параллельное	
20	_	6	_	_	90	последовательное	

21	_	_	42,52	_	82	независимое
22	235	_	_	2	_	параллельное
23		3	_	_	89	последовательное
24	-	_	_	_	80	независимое
25	-	_	1,4	_	75	параллельное

Примеры решения задач

Пример 1. Генератор постоянного тока параллельного возбуждении имеет номинальную мощность $P_2 = 10$ кВт; номинальное напряжение U = 230 В; частоту вращения n = 1450об/мин; сопротивление обмоток цепи обмотки возбуждения $R_{\rm B}$ =150 Ом; сопротивление обмоток

якоря $R_{\rm H} = 0.3$ Ом; КПД в номинальном режиме $\eta = 86.5$ %. Падением напряжения в щеточном контакте пренебречь.

Определить: ток генератора, ток в цепи возбуждения, ток в цепи якоря, ЭДС якоря, электро-

магнитный момент, электромагнитная мощность, мощность приводного двигателя. Генератор работает при номинальной нагрузке.

Решение:

Ток генератора: $I = \frac{p_2}{v} = \frac{10000}{230} = 43,5A.$

Ток в обмотке возбуждения: $I_{\rm B} = \frac{u}{{}^{230}} = \frac{230}{150} = 1,5A.$

Ток в цепи якоря: $I_8 = I + I_B = 43.5 + 1.5 = 45$ A.

ЭДС якоря: $E = U + I_{\text{Я}} \cdot R_{\text{Я}} = 230 + 45 \cdot 0,3 = 243,5 \text{ B}.$

Электромагнитная мощность: $P_{\text{эм}} = E \cdot I_{\text{Я}} = 243, 5 \cdot 45 = 10957 \; \text{Вт}$. Электромагнитный момент: $M_{\text{эм}} = 9,55 \frac{p_{\text{зм}}}{n} = 9,55 \frac{10957}{1450} = 72 \; \text{H} \cdot \text{м}$

Мощность приводного двигателя: $P_1 = \frac{P_2}{\eta/100} = \frac{100\,00}{0,865} = 11561\,\mathrm{Bt}$

Пример 2. В генераторе постоянного тока независимого возбуждения с номинальным напряжением U = 440 B установился ток I = 64 A при частоте якоря n = 2800 об/мин. Bновом режиме работы нагрузка и магнитный поток не изменились, но частота якоря стала n* = 740 об/мин.

Определить напряжение и ток в генераторе в новом режиме.

Решение:

В генераторе независимого возбуждения ток генератора равен току якоря, т.е. $I = I_{\rm R}$.

В номинальном режиме:

Напряжение на нагрузке $U = I \cdot R_{\rm H}$.

ЭДС якоря $E = U + I \cdot R_{\rm H} = I \cdot R_{\rm H} + I \cdot R_{\rm H}$, с другой стороны $E = C_{\rm E} \cdot n \cdot \Phi$.

Получили: $I \cdot R_H + I \cdot R_R = C_E \cdot n \cdot \Phi$.

В новом режиме, соответственно:

$$E^* = U^* + I^* \cdot R_{\mathcal{A}} = I^* \cdot R_{\mathcal{H}} + I^* \cdot R_{\mathcal{A}} = C_E \cdot n^* \cdot \Phi.$$

Возьмем отношение, полученных уравнений и получим:
$$I^* = \frac{n^*}{n} \cdot I = \frac{740}{2800} \cdot 64 = 16,9$$
 A и

$$U^* = \frac{U}{I} \cdot I^* = \frac{440}{64} \cdot 16,9 = 116,3$$

Пример 3. В электродвигателе постоянного тока с параллельным возбуждением, имеющим номинальные данные: мощность на валу $P_2 = 130 \text{ kBr}$; напряжение U = 220 B; ток, потребляемый из сети I = 640 A; частоту вращения n = 600 об/мин; сопротивление цепи обмотки возбуждения $R_B = 43$ Ом; сопротивление обмотки якоря $R_g = 0.007$ Ом.

Определить номинальные суммарные и электрические потери в обмотках.

Решение:

Темение.
$$I_{\rm B} = \frac{U}{R_B} = \frac{230}{43} = 5,116 \; {\rm Om}.$$

Ток в цепи якоря: $I_{\rm H} = I - I_{\rm B} = 640$ -5,116 = 634,884 A.

Электрические потери мощности

в цепи якоря: $\Delta P_{\text{эл } \text{Я}} = I_{\text{Я}}^2 \cdot R_{\text{Я}} = 634,884^2 \cdot 0,007 = 2821,544 \text{ BT};$

в обмотке возбуждения:

$$\Delta P_{\text{3JI}B} = I_{\text{B}}^2 \cdot R_{\text{B}} = U \cdot I_{\text{B}} = 220 \cdot 5,116 = 1125,52 \text{ BT}.$$

Суммарные потери мощности:

$$\Sigma \Delta P = \Delta P_{\text{эл B}} + \Delta P_{\text{эл R}} = 1125,52 + 2821,544 = 3947,064 \text{ BT}$$
.

Пример 4. Двигатель постоянного тока последовательного возбуждения включен в сеть с напряжением U = 220 B при номинальном вращающем моменте $M = 101,7 \text{ H} \cdot \text{м}$ развивает частоту вращения якоря n = 750 об/мин. КПД двигателя $\eta = 75$ %; сопротивление цепи обмотки возбуждения $R_{\rm B} = 0.197$ Ом; сопротивление обмотки якоря $R_{\rm H} = 0.443$ Ом. Пуск двигателя осуществляется при пусковом реостате $R_{\text{пуск}}=1,17 \text{ Ом.}$ Пусковой ток приводит к увеличению магнитного потока в 1,2 раза.

Определить номинальные мощность на валу, электромагнитную и потребляемую мощности; суммарные потери в двигателе; пусковой ток и пусковой момент.

Решение:

Мощность на валу:
$$P_2$$
= M $\frac{\pi \cdot n}{30}$ = 101,7 $\frac{3,14 \cdot 750}{30}$ = 7983,45 Вт

Потребляемая мощность:
$$P_1 = \frac{P_2}{\eta/100} = \frac{7983,45}{0,75} = \frac{10644,4 \ \mathrm{BT}}{10644}$$

Суммарные потери: $\Sigma \Delta P = P_1 - P_2 = 10644, 4 - 7983, 45 = 2660, 95 \ Bt.$

Т.к. двигатель с последовательным возбуждением, тогда ток якоря находим:

$$I_{\rm A} = I_{\rm B} = I = \frac{P_1}{u} = \frac{10644.4}{220} = 48.38 \text{ A}$$

ЭДС якоря: $E = U - I \cdot (R_{\rm H} + R_{\rm B}) = 220 - (0.443 + 0.197) \cdot 48.38 = 189.04 \, {\rm B}.$

Электромагнитная мощность:
$$P_{\text{эм}} = E \cdot I = 189,04 \cdot 48,38 = 9145,6 \; \text{Вт}$$
 . Пусковой ток: $I_{\text{пуск}} = \frac{u}{R_{\text{Я}} + R_{\text{пуск}} + R_{B}} = \frac{220}{1,443 + 0,197 + 1,17} = 121,547 \; \text{A}$

Номинальный момент: $M = C_{\rm M} \cdot \Phi \cdot I = 101,7$,

пусковой момент: $M_{\text{пуск}} = C_{\text{M}} \cdot \Phi_{\text{пуск}} \cdot I_{\text{пуск}} = C_{\text{M}} \cdot 1, 2 \cdot \Phi \cdot I_{\text{пуск}}$.

Возьмем отношение, полученных уравнений и получим:
$$M_{\text{пуск}} = \frac{\frac{1,2 \cdot I_{\text{пуск}} \cdot M}{I}}{I} = \frac{\frac{1,2 \cdot 121,547 \cdot 101,7}{48,38}}{48,38} = 305,1 \text{ H} \cdot \text{м}$$

Кратность

$$\frac{I_{\text{пуск}}}{I} = \frac{121,547}{48/380,75} = 2,5$$

пускового момента:
$$\frac{M_{\text{пуск}}}{M} = \frac{305,1}{101,7} = 3$$