МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УДМУРТСКОЙ РЕСПУБЛИКИ

АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ УДМУРТСКОЙ РЕСПУБЛИКИ «ТЕХНИКУМ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ИМЕНИ А.В. ВОСКРЕСЕНСКОГО»

ПРОГРАММА ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА специальность 11.02.17 Разработка электронных устройств и систем квалификации выпускника – техник

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.06. Информационные технологии в профессиональной деятельности Форма обучения - очная

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 11.02.17 Разработка электронных устройств и систем

УТВЕРЖДАЮ

Заместитель директора по УМР автономного профессионального образовательного учреждения Удмуртской Республики «Техникум радиоэлектроники и информационных технологий имени А.В. Воскресенского»

<u>Моев / О.М. Моекова</u> / «<u>16 » Ол 2023</u> г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.06. Информационные технологии в профессиональной деятельности для специальности 11.02.17 Разработка электронных устройств и систем

Разработчик: Шишова А. В., Масалёв В. Г. АПОУ УР «ТРИТ им. А.В. Воскресенского»

Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу дисциплины

ОП.06. Информационные технологии в профессиональной деятельности ФОС включают контрольно-оценочные и контрольно-измерительные материалы для проведения входного, итогового контроля и промежуточной аттестации.

ФОС разработан на основании

- примерной программы учебной дисциплины;
- рабочей программы учебной дисциплины.

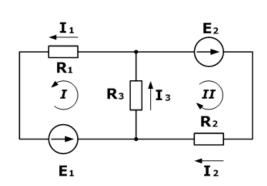
1. Паспорт оценочных средств

В результате контроля и оценки по дисциплине осуществляется комплексная проверка следующих умений (У) и знаний (З):

Содержание обучения	Характеристика основных видов
	учебной деятельности студентов
	(на уровне учебных действий)
Система математического	Грамотно выполнять основные
моделирования	арифметические операции
	Точно и грамотно давать определение
	понятиям и методам математического анализа
	и синтеза
	Решать простейшие задачи на поиск
	экстремума функций
	Строить двумерные, трехмерные графики
	С учетом правил записывать матричные
	операторы
Общие вопросы математического	Точно и грамотно давать определение
моделирования электронных схем	понятиям и методам математического анализа
	и синтеза электрических схем
	Грамотно применять формулы для расчета
	параметров электрических цепей и логических
	схем

2. Распределение типов контрольных заданий по элементам знаний и умений

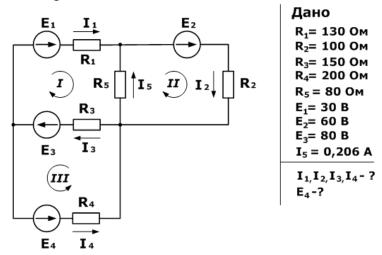
Основной целью оценки освоения дисциплины является оценка умений и знаний.


Оценка освоения умений и знаний осуществляется с использованием следующих форм и методов контроля: устный опрос, подготовка сообщений по заданной теме, выполнение практических и контрольных работ, тестирование, самостоятельные работы, устные ответы.

3. Задания для оценки освоения дисциплины:

Входной контроль

1 вариант


- 1. Найти матрицу C=A-3B, если $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 1 & 2 \\ 0 & 0 \end{pmatrix};$
- 2. Решить систему уравнений: $\begin{cases} x+2 \ y=-1 \\ 4^{x+y^2}=16 \end{cases}$,
- 3. Найти экстремумы функции: $y=1-x^4$
- 4. Определите силу тока в медном проводнике сеченим 0,5 мм2, если длина проводника 100 м, а напряжение на его концах равно 6,8.
- 5. Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

Дано $R_1 = 100 \text{ Ом}$ $R_2 = 150 \text{ Ом}$ $R_3 = 150 \text{ Ом}$ $E_1 = 75 \text{ B}$ $E_2 = 100 \text{ B}$	
I ₁ ,I ₂ ,I ₃ -?	

2 вариант

- 1. Найти матрицу C=A*B, если $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$;
- 2. Решить систему уравнений: $\begin{cases} x y = 2 \\ 3^{x+y^2} = \frac{1}{3}, \end{cases}$
- 3. Найти экстремумы функции: $y = (x 1 \& \&^3)$
- 4. По вольфрамовой проволоке длиной 3 м протекает электрический ток силой 0,04 А. Проволока находится под напряжением 5 В. Определите величину площади поперечного сечения проволоки.
- 5. Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.

Критерии оценивания:

- «3» выполнение заданий 3;
- «4» выполнение заданий 4;
- «5» выполнение всех заданий.

Итоговый контроль

- 1. Вычислить натуральный логарифм от 49;
- 2. Вычислить $\sqrt{47+56^6+\sin(0.6)}$;
- 3. Вычислить функцию $f(x) = \frac{\cos^2 x}{x}$ и построить ее график;

4. Решить уравнения в символьном виде
$$x^2 + x + 1 = 0$$
 $\begin{vmatrix} \frac{-1}{2} + \frac{\sqrt{3} \cdot i}{2} \\ \frac{-1}{2} - \frac{\sqrt{3} \cdot i}{2} \end{vmatrix}$

- 5. Построить график функции двух переменных $z = \frac{x+y}{2x^2+3}$, если $x_1 = 1, x_2 = 11, h_x = 0.2$, а $y_1 = -10, y_2 = 15, h_y = 0.5$.
- 6. Для последовательного соединения R, L и C элементов (рис. ПБ.1) рассчитать ток I, напряжения на элементах U_R , U_L , U_C , разность фаз входного напряжения и тока $\stackrel{\checkmark}{-}$, активную, реактивную и полную мощность P, Q, S, а также эквивалентную индуктивность L_{\ni} или емкость C_{\ni} . При расчете использовать значения сопротивления, индуктивности и емкости по указанию преподавателя, а значение напряжения источника \ni ДС E и частоты f взять из табл. 1 в зависимости от номера варианта.

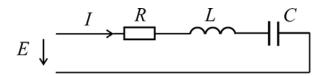


Рис. ПБ.1

Таблица 1

		Номер							
		варианта							
	5	1	2	3	4	5	6	7	8
	6	9	10	11	12	13	14	15	16
	7	17	18	19	20	21	22	23	24
E,	8	25	26	27	28	29	30	31	32
B	9	33	34	35	36	37	38	39	40
	10	41	42	43	44	45	46	47	48
	11	49	50	51	52	53	54	55	56
f,		35	40	45	50	55	60	65	70
	Гц	00 00 00 00 00 00 00		00					

Результаты вычислений занести в табл.2. По результатам расчета построить совмещенную векторную диаграмму напряжений и тока.

Таблица 2

		Способ			
Электрические	опре	определения			
величины	вели	чины			
	Расчет	Эксперимент			
E, B					
I, mA					
U_{R} , B		Измеренн			
U_L , B		ые			
U_C , B		значения			
→					
Р, Вт					
Q, BAp					
S, BA		Расчетн			
$Z_{\mathfrak{I}}$, Ом		ые			
<i>R</i> э, Ом		значени я			
$X_{\mathfrak{I}}$, Ом		ПО			
L_{\Im} ,		результатам			
мГн		измерения			
$C_{\mathfrak{I}}$,					
мкФ					

^{7.} Составить таблицу истинности и рассчитать коэффициент счета для синхронного реверсивного счетчика на 4-х JK-триггерах. Смоделировать схему счетчика в программе NI Multisim.

Критерии оценивания:

«3» - выполнение заданий 5;

«4» - выполнение заданий 6;

«5» - выполнение всех заданий.